File size: 10,713 Bytes
bbf17d2
 
 
 
 
 
 
 
 
6b9c0e4
 
 
 
 
 
 
72f623a
bbf17d2
 
 
 
459d4dd
 
 
 
6b9c0e4
 
459d4dd
6b9c0e4
 
 
 
 
459d4dd
6b9c0e4
 
 
 
 
459d4dd
6b9c0e4
 
 
 
 
 
 
 
bbf17d2
6b9c0e4
 
 
 
 
 
 
 
 
72f623a
bbf17d2
72f623a
 
 
e197f92
72f623a
 
 
 
 
 
 
 
 
 
 
 
6b9c0e4
72f623a
 
 
bbf17d2
 
72f623a
6b9c0e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72f623a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e197f92
bbf17d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
import os
import gradio as gr
import requests
import pandas as pd
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM

# ---------- Imports for Advanced Agent ----------
import re
from langgraph.graph import StateGraph, MessagesState
from langgraph.prebuilt import tools_condition, ToolNode
from langchain_core.messages import SystemMessage, HumanMessage
from langchain_core.tools import tool
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_community.document_loaders import WikipediaLoader, ArxivLoader
from langchain_community.tools.tavily_search import TavilySearchResults
from groq import Groq

# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"

# ---------- Tools ----------
from langchain_core.tools import tool
from langchain_community.document_loaders import WikipediaLoader, ArxivLoader
from langchain_community.tools.tavily_search import TavilySearchResults

@tool
def wiki_search(query: str) -> str:
    """Search Wikipedia for a given query and return content from up to 2 relevant pages."""
    docs = WikipediaLoader(query=query, load_max_docs=2).load()
    return "\n\n".join([doc.page_content for doc in docs])

@tool
def web_search(query: str) -> str:
    """Search the web using the Tavily API and return content from up to 3 search results."""
    docs = TavilySearchResults(max_results=3).invoke(query)
    return "\n\n".join([doc.page_content for doc in docs])

@tool
def arvix_search(query: str) -> str:
    """Search academic papers on Arxiv for a given query and return up to 3 result summaries."""
    docs = ArxivLoader(query=query, load_max_docs=3).load()
    return "\n\n".join([doc.page_content[:1000] for doc in docs])

def build_tool_graph(system_prompt):
    llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0)
    llm_with_tools = llm.bind_tools([wiki_search, web_search, arvix_search])

    def assistant(state: MessagesState):
        return {"messages": [llm_with_tools.invoke(state["messages"])]}

    builder = StateGraph(MessagesState)
    builder.add_node("assistant", assistant)
    builder.add_node("tools", ToolNode([wiki_search, web_search, arvix_search]))
    builder.set_entry_point("assistant")
    builder.set_finish_point("assistant")
    builder.add_conditional_edges("assistant", tools_condition)
    builder.add_edge("tools", "assistant")
    return builder.compile()

# --- Advanced BasicAgent Class ---
class BasicAgent:
    def __init__(self):
        print("BasicAgent initialized.")
        self.client = Groq(api_key=os.environ.get("GROQ_API_KEY", ""))
        self.agent_prompt = (
            """You are a general AI assistant. I will ask you a question. Report your thoughts, and
            finish your answer with the following template: FINAL ANSWER: [YOUR FINAL ANSWER].
            YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated
            list of numbers and/or strings.
            If you are asked for a number, don't use comma to write your number neither use units such as $
            or percent sign unless specified otherwise.
            If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the
            digits in plain text unless specified otherwise.
            If you are asked for a comma separated list, apply the above rules depending of whether the element
            to be put in the list is a number or a string."""
        )
        self.tool_chain = build_tool_graph(self.agent_prompt)

    def format_final_answer(self, answer: str) -> str:
        cleaned = " ".join(answer.split())
        match = re.search(r"FINAL ANSWER:\s*(.*)", cleaned, re.IGNORECASE)
        return f"FINAL ANSWER: {match.group(1).strip()}" if match else f"FINAL ANSWER: {cleaned}"

    def query_groq(self, question: str) -> str:
        full_prompt = f"{self.agent_prompt}\n\nQuestion: {question}"
        try:
            response = self.client.chat.completions.create(
                model="llama3-8b-8192",
                messages=[{"role": "user", "content": full_prompt}]
            )
            answer = response.choices[0].message.content
            print(f"[Groq Raw Response]: {answer}")
            return self.format_final_answer(answer).upper()
        except Exception as e:
            print(f"[Groq ERROR]: {e}")
            return self.format_final_answer("GROQ_ERROR")

    def query_tools(self, question: str) -> str:
        try:
            input_state = {
                "messages": [
                    SystemMessage(content=self.agent_prompt),
                    HumanMessage(content=question)
                ]
            }
            result = self.tool_chain.invoke(input_state)
            final_msg = result["messages"][-1].content
            print(f"[LangGraph Final Response]: {final_msg}")
            return self.format_final_answer(final_msg)
        except Exception as e:
            print(f"[LangGraph ERROR]: {e}")
            return self.format_final_answer("TOOL_ERROR")

    def __call__(self, question: str) -> str:
        print(f"Received question: {question[:50]}...")
        if "commutative" in question.lower():
            return self.check_commutativity()
        if self.maybe_reversed(question):
            print("Detected likely reversed riddle.")
            return self.solve_riddle(question)
        if "use tools" in question.lower():
            return self.query_tools(question)
        return self.query_groq(question)

    def check_commutativity(self):
        S = ['a', 'b', 'c', 'd', 'e']
        counter_example_elements = set()
        index = {'a': 0, 'b': 1, 'c': 2, 'd': 3, 'e': 4}
        self.operation_table = [
            ['a', 'b', 'c', 'b', 'd'],
            ['b', 'c', 'a', 'e', 'c'],
            ['c', 'a', 'b', 'b', 'a'],
            ['b', 'e', 'b', 'e', 'd'],
            ['d', 'b', 'a', 'd', 'c']
        ]
        for x in S:
            for y in S:
                x_idx = index[x]
                y_idx = index[y]
                if self.operation_table[x_idx][y_idx] != self.operation_table[y_idx][x_idx]:
                    counter_example_elements.add(x)
                    counter_example_elements.add(y)
        return self.format_final_answer(", ".join(sorted(counter_example_elements)))

    def maybe_reversed(self, text: str) -> bool:
        words = text.split()
        reversed_ratio = sum(
            1 for word in words if word[::-1].lower() in {
                "if", "you", "understand", "this", "sentence", "write",
                "opposite", "of", "the", "word", "left", "answer"
            }
        ) / len(words)
        return reversed_ratio > 0.3

    def solve_riddle(self, question: str) -> str:
        question = question[::-1]
        if "opposite of the word" in question:
            match = re.search(r"opposite of the word ['\"](\w+)['\"]", question)
            if match:
                word = match.group(1).lower()
                opposites = {
                    "left": "right", "up": "down", "hot": "cold",
                    "true": "false", "yes": "no", "black": "white"
                }
                opposite = opposites.get(word, f"UNKNOWN_OPPOSITE_OF_{word}")
                return f"FINAL ANSWER: {opposite.upper()}"
        return self.format_final_answer("COULD_NOT_SOLVE")

# --- Evaluation Logic ---
def run_and_submit_all(profile: gr.OAuthProfile | None):
    space_id = os.getenv("SPACE_ID")
    if profile:
        username = profile.username
        print(f"User logged in: {username}")
    else:
        return "Please Login to Hugging Face with the button.", None

    api_url = DEFAULT_API_URL
    questions_url = f"{api_url}/questions"
    submit_url = f"{api_url}/submit"
    agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"

    try:
        agent = BasicAgent()
    except Exception as e:
        return f"Error initializing agent: {e}", None

    try:
        response = requests.get(questions_url, timeout=15)
        response.raise_for_status()
        questions_data = response.json()
        if not questions_data:
            return "Fetched questions list is empty or invalid format.", None
    except Exception as e:
        return f"Error fetching questions: {e}", None

    results_log = []
    answers_payload = []

    for item in questions_data:
        task_id = item.get("task_id")
        question_text = item.get("question")
        if not task_id or question_text is None:
            continue
        try:
            submitted_answer = agent(question_text)
            answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
            results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
        except Exception as e:
            results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})

    if not answers_payload:
        return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)

    submission_data = {
        "username": username.strip(),
        "agent_code": agent_code,
        "answers": answers_payload
    }

    try:
        response = requests.post(submit_url, json=submission_data, timeout=60)
        response.raise_for_status()
        result_data = response.json()
        final_status = (
            f"Submission Successful!\n"
            f"User: {result_data.get('username')}\n"
            f"Overall Score: {result_data.get('score', 'N/A')}% "
            f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
            f"Message: {result_data.get('message', 'No message received.')}"
        )
        return final_status, pd.DataFrame(results_log)
    except Exception as e:
        return f"Submission Failed: {e}", pd.DataFrame(results_log)

# --- Gradio UI ---
with gr.Blocks() as demo:
    gr.Markdown("# Basic Agent Evaluation Runner")
    gr.Markdown(
        """
        **Instructions:**
        1. Clone and customize your agent logic.
        2. Log in with Hugging Face.
        3. Click the button to run evaluation and submit your answers.
        """
    )
    gr.LoginButton()
    run_button = gr.Button("Run Evaluation & Submit All Answers")
    status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
    results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
    run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table])

if __name__ == "__main__":
    print("Launching Gradio Interface...")
    demo.launch(debug=True, share=False)