Spaces:
Runtime error
Runtime error
File size: 11,209 Bytes
bbf17d2 5d6fe2e bbf17d2 16600af bbf17d2 16600af 72f623a 16600af 7f9795b 16600af 7f9795b 16600af 6b9c0e4 16600af bbf17d2 16600af bbf17d2 16600af bbf17d2 16600af bbf17d2 16600af bbf17d2 16600af bbf17d2 16600af bbf17d2 16600af bbf17d2 16600af bbf17d2 16600af bbf17d2 16600af bbf17d2 16600af bbf17d2 16600af 7f9795b 16600af bbf17d2 16600af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
import os
import gradio as gr
import requests
import pandas as pd
from transformers import AutoModelForCausalLM, AutoTokenizer
# ---------- Imports for Advanced Agent ----------
import re
from langgraph.graph import StateGraph, MessagesState
from langgraph.prebuilt import tools_condition, ToolNode
from langchain_core.messages import SystemMessage, HumanMessage
from langchain_core.tools import tool
from langchain_community.document_loaders import WikipediaLoader, ArxivLoader
from langchain_community.tools.tavily_search import TavilySearchResults
from groq import Groq
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
# ---------- Tools ----------
from langchain_core.tools import tool
from langchain_community.document_loaders import WikipediaLoader, ArxivLoader
from langchain_community.tools.tavily_search import TavilySearchResults
@tool
def wiki_search(query: str) -> str:
"""Search Wikipedia for a given query and return content from up to 2 relevant pages."""
docs = WikipediaLoader(query=query, load_max_docs=2).load()
return "\n\n".join([doc.page_content for doc in docs])
@tool
def web_search(query: str) -> str:
"""Search the web using the Tavily API and return content from up to 3 search results."""
docs = TavilySearchResults(max_results=3).invoke(query)
return "\n\n".join([doc.page_content for doc in docs])
@tool
def arvix_search(query: str) -> str:
"""Search academic papers on Arxiv for a given query and return up to 3 result summaries."""
docs = ArxivLoader(query=query, load_max_docs=3).load()
return "\n\n".join([doc.page_content[:1000] for doc in docs])
# Tool-based LangGraph builder
def build_tool_graph(system_prompt):
llm = AutoModelForCausalLM.from_pretrained("gpt2") # Load Hugging Face GPT-2 model
tokenizer = AutoTokenizer.from_pretrained("gpt2")
def assistant(state: MessagesState):
input_text = state["messages"][-1]["content"]
inputs = tokenizer(input_text, return_tensors="pt")
outputs = llm.generate(**inputs)
result = tokenizer.decode(outputs[0], skip_special_tokens=True)
return {"messages": [{"content": result}]}
builder = StateGraph(MessagesState)
builder.add_node("assistant", assistant)
builder.add_node("tools", ToolNode([wiki_search, web_search, arvix_search]))
builder.set_entry_point("assistant")
builder.set_finish_point("assistant")
builder.add_conditional_edges("assistant", tools_condition)
builder.add_edge("tools", "assistant")
return builder.compile()
# --- Advanced BasicAgent Class ---
class BasicAgent:
def __init__(self):
print("BasicAgent initialized.")
self.client = Groq(api_key=os.environ.get("GROQ_API_KEY", ""))
self.agent_prompt = (
"""You are a general AI assistant. I will ask you a question. Report your thoughts, and
finish your answer with the following template: FINAL ANSWER: [YOUR FINAL ANSWER].
YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated
list of numbers and/or strings.
If you are asked for a number, don't use comma to write your number neither use units such as $
or percent sign unless specified otherwise.
If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the
digits in plain text unless specified otherwise.
If you are asked for a comma separated list, apply the above rules depending of whether the element
to be put in the list is a number or a string."""
)
self.tool_chain = build_tool_graph(self.agent_prompt)
def format_final_answer(self, answer: str) -> str:
cleaned = " ".join(answer.split())
match = re.search(r"FINAL ANSWER:\s*(.*)", cleaned, re.IGNORECASE)
return f"FINAL ANSWER: {match.group(1).strip()}" if match else f"FINAL ANSWER: {cleaned}"
def query_groq(self, question: str) -> str:
full_prompt = f"{self.agent_prompt}\n\nQuestion: {question}"
try:
response = self.client.chat.completions.create(
model="llama3-8b-8192",
messages=[{"role": "user", "content": full_prompt}]
)
answer = response.choices[0].message.content
print(f"[Groq Raw Response]: {answer}")
return self.format_final_answer(answer).upper()
except Exception as e:
print(f"[Groq ERROR]: {e}")
return self.format_final_answer("GROQ_ERROR")
def query_tools(self, question: str) -> str:
try:
input_state = {
"messages": [
SystemMessage(content=self.agent_prompt),
HumanMessage(content=question)
]
}
result = self.tool_chain.invoke(input_state)
final_msg = result["messages"][-1].content
print(f"[LangGraph Final Response]: {final_msg}")
return self.format_final_answer(final_msg)
except Exception as e:
print(f"[LangGraph ERROR]: {e}")
return self.format_final_answer("TOOL_ERROR")
def __call__(self, question: str) -> str:
print(f"Received question: {question[:50]}...")
if "commutative" in question.lower():
return self.check_commutativity()
if self.maybe_reversed(question):
print("Detected likely reversed riddle.")
return self.solve_riddle(question)
if "use tools" in question.lower():
return self.query_tools(question)
return self.query_groq(question)
def check_commutativity(self):
S = ['a', 'b', 'c', 'd', 'e']
counter_example_elements = set()
index = {'a': 0, 'b': 1, 'c': 2, 'd': 3, 'e': 4}
self.operation_table = [
['a', 'b', 'c', 'b', 'd'],
['b', 'c', 'a', 'e', 'c'],
['c', 'a', 'b', 'b', 'a'],
['b', 'e', 'b', 'e', 'd'],
['d', 'b', 'a', 'd', 'c']
]
for x in S:
for y in S:
x_idx = index[x]
y_idx = index[y]
if self.operation_table[x_idx][y_idx] != self.operation_table[y_idx][x_idx]:
counter_example_elements.add(x)
counter_example_elements.add(y)
return self.format_final_answer(", ".join(sorted(counter_example_elements)))
def maybe_reversed(self, text: str) -> bool:
words = text.split()
reversed_ratio = sum(
1 for word in words if word[::-1].lower() in {
"if", "you", "understand", "this", "sentence", "write",
"opposite", "of", "the", "word", "left", "answer"
}
) / len(words)
return reversed_ratio > 0.3
def solve_riddle(self, question: str) -> str:
question = question[::-1]
if "opposite of the word" in question:
match = re.search(r"opposite of the word ['\"](\w+)['\"]", question)
if match:
word = match.group(1).lower()
opposites = {
"left": "right", "up": "down", "hot": "cold",
"true": "false", "yes": "no", "black": "white"
}
opposite = opposites.get(word, f"UNKNOWN_OPPOSITE_OF_{word}")
return f"FINAL ANSWER: {opposite.upper()}"
return self.format_final_answer("COULD_NOT_SOLVE")
# --- Evaluation Logic ---
def run_and_submit_all(profile, test_mode):
space_id = os.getenv("SPACE_ID")
if profile:
username = profile
print(f"User logged in: {username}")
else:
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
try:
agent = BasicAgent()
except Exception as e:
return f"Error initializing agent: {e}", None
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
return "Fetched questions list is empty or invalid format.", None
except Exception as e:
return f"Error fetching questions: {e}", None
results_log = []
answers_payload = []
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
continue
try:
submitted_answer = agent(question_text)
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
except Exception as e:
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
if not answers_payload:
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
submission_data = {
"username": username.strip(),
"agent_code": agent_code,
"answers": answers_payload
}
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
return final_status, pd.DataFrame(results_log)
except Exception as e:
return f"Submission Failed: {e}", pd.DataFrame(results_log)
# --- Gradio UI ---
with gr.Blocks() as demo:
gr.Markdown("# Basic Agent Evaluation Runner")
gr.Markdown(
"""
**Instructions:**
1. Clone and customize your agent logic.
2. Log in with Hugging Face.
3. Click the button to run evaluation and submit your answers.
"""
)
# Simulate OAuth profile with a textbox for user
test_checkbox = gr.Checkbox(label="Enable Test Mode (Skip Submission)", value=False)
run_button = gr.Button("Run Evaluation")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
# Simulate OAuth Profile with a mock profile for now
mock_oauth_profile = gr.Textbox(label="Simulated OAuth Profile", value="mock_user", interactive=False)
run_button.click(
fn=run_and_submit_all,
inputs=[mock_oauth_profile, test_checkbox],
outputs=[status_output, results_table]
)
if __name__ == "__main__":
print("Launching Gradio Interface...")
demo.launch(debug=True, share=False) |