#!/usr/bin/env python
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""This tool creates an html visualization of a TensorFlow Lite graph.
Example usage:
python visualize.py foo.tflite foo.html
"""
import json
import os
import re
import sys
import numpy as np
# pylint: disable=g-import-not-at-top
if not os.path.splitext(__file__)[0].endswith(
os.path.join("tflite_runtime", "visualize")):
# This file is part of tensorflow package.
from tensorflow.lite.python import schema_py_generated as schema_fb
else:
# This file is part of tflite_runtime package.
from tflite_runtime import schema_py_generated as schema_fb
import gradio as gr
from html import escape
# A CSS description for making the visualizer
# body {font-family: sans-serif; background-color: #fa0;}
# # font-family: sans-serif;
""""""
_CSS = """
"""
_D3_HTML_TEMPLATE = """
"""
def TensorTypeToName(tensor_type):
"""Converts a numerical enum to a readable tensor type."""
for name, value in schema_fb.TensorType.__dict__.items():
if value == tensor_type:
return name
return None
def BuiltinCodeToName(code):
"""Converts a builtin op code enum to a readable name."""
for name, value in schema_fb.BuiltinOperator.__dict__.items():
if value == code:
return name
return None
def NameListToString(name_list):
"""Converts a list of integers to the equivalent ASCII string."""
if isinstance(name_list, str):
return name_list
else:
result = ""
if name_list is not None:
for val in name_list:
result = result + chr(int(val))
return result
class OpCodeMapper:
"""Maps an opcode index to an op name."""
def __init__(self, data):
self.code_to_name = {}
for idx, d in enumerate(data["operator_codes"]):
self.code_to_name[idx] = BuiltinCodeToName(d["builtin_code"])
if self.code_to_name[idx] == "CUSTOM":
self.code_to_name[idx] = NameListToString(d["custom_code"])
def __call__(self, x):
if x not in self.code_to_name:
s = ""
else:
s = self.code_to_name[x]
return "%s (%d)" % (s, x)
class DataSizeMapper:
"""For buffers, report the number of bytes."""
def __call__(self, x):
if x is not None:
return "%d bytes" % len(x)
else:
return "--"
class TensorMapper:
"""Maps a list of tensor indices to a tooltip hoverable indicator of more."""
def __init__(self, subgraph_data):
self.data = subgraph_data
def __call__(self, x):
html = ""
if x is None:
return html
html += ""
for i in x:
tensor = self.data["tensors"][i]
html += str(i) + " "
html += NameListToString(tensor["name"]) + " "
html += TensorTypeToName(tensor["type"]) + " "
html += (repr(tensor["shape"]) if "shape" in tensor else "[]")
html += (repr(tensor["shape_signature"])
if "shape_signature" in tensor else "[]") + " "
html += ""
html += repr(x)
html += ""
return html
def GenerateGraph(subgraph_idx, g, opcode_mapper):
"""Produces the HTML required to have a d3 visualization of the dag."""
def TensorName(idx):
return "t%d" % idx
def OpName(idx):
return "o%d" % idx
edges = []
nodes = []
first = {}
second = {}
pixel_mult = 200 # TODO(aselle): multiplier for initial placement
width_mult = 170 # TODO(aselle): multiplier for initial placement
for op_index, op in enumerate(g["operators"] or []):
if op["inputs"] is not None:
for tensor_input_position, tensor_index in enumerate(op["inputs"]):
if tensor_index not in first:
first[tensor_index] = ((op_index - 0.5 + 1) * pixel_mult,
(tensor_input_position + 1) * width_mult)
edges.append({
"source": TensorName(tensor_index),
"target": OpName(op_index)
})
if op["outputs"] is not None:
for tensor_output_position, tensor_index in enumerate(op["outputs"]):
if tensor_index not in second:
second[tensor_index] = ((op_index + 0.5 + 1) * pixel_mult,
(tensor_output_position + 1) * width_mult)
edges.append({
"target": TensorName(tensor_index),
"source": OpName(op_index)
})
nodes.append({
"id": OpName(op_index),
"name": opcode_mapper(op["opcode_index"]),
"group": 2,
"x": pixel_mult,
"y": (op_index + 1) * pixel_mult
})
for tensor_index, tensor in enumerate(g["tensors"]):
initial_y = (
first[tensor_index] if tensor_index in first else
second[tensor_index] if tensor_index in second else (0, 0))
nodes.append({
"id": TensorName(tensor_index),
"name": "%r (%d)" % (getattr(tensor, "shape", []), tensor_index),
"group": 1,
"x": initial_y[1],
"y": initial_y[0]
})
graph_str = json.dumps({"nodes": nodes, "edges": edges})
html = _D3_HTML_TEMPLATE % (graph_str, subgraph_idx)
return html
def GenerateTableHtml(items, keys_to_print, display_index=True):
"""Given a list of object values and keys to print, make an HTML table.
Args:
items: Items to print an array of dicts.
keys_to_print: (key, display_fn). `key` is a key in the object. i.e.
items[0][key] should exist. display_fn is the mapping function on display.
i.e. the displayed html cell will have the string returned by
`mapping_fn(items[0][key])`.
display_index: add a column which is the index of each row in `items`.
Returns:
An html table.
"""
html = ""
# Print the list of items
html += "
\n"
html += "
\n"
if display_index:
html += "
index
"
for h, mapper in keys_to_print:
html += "
%s
" % h
html += "
\n"
for idx, tensor in enumerate(items):
html += "
\n"
if display_index:
html += "
%d
" % idx
# print tensor.keys()
for h, mapper in keys_to_print:
val = tensor[h] if h in tensor else None
val = val if mapper is None else mapper(val)
html += "
%s
\n" % val
html += "
\n"
html += "
\n"
return html
def CamelCaseToSnakeCase(camel_case_input):
"""Converts an identifier in CamelCase to snake_case."""
s1 = re.sub("(.)([A-Z][a-z]+)", r"\1_\2", camel_case_input)
return re.sub("([a-z0-9])([A-Z])", r"\1_\2", s1).lower()
def FlatbufferToDict(fb, preserve_as_numpy):
"""Converts a hierarchy of FB objects into a nested dict.
We avoid transforming big parts of the flat buffer into python arrays. This
speeds conversion from ten minutes to a few seconds on big graphs.
Args:
fb: a flat buffer structure. (i.e. ModelT)
preserve_as_numpy: true if all downstream np.arrays should be preserved.
false if all downstream np.array should become python arrays
Returns:
A dictionary representing the flatbuffer rather than a flatbuffer object.
"""
if isinstance(fb, int) or isinstance(fb, float) or isinstance(fb, str):
return fb
elif hasattr(fb, "__dict__"):
result = {}
for attribute_name in dir(fb):
attribute = fb.__getattribute__(attribute_name)
if not callable(attribute) and attribute_name[0] != "_":
snake_name = CamelCaseToSnakeCase(attribute_name)
preserve = True if attribute_name == "buffers" else preserve_as_numpy
result[snake_name] = FlatbufferToDict(attribute, preserve)
return result
elif isinstance(fb, np.ndarray):
return fb if preserve_as_numpy else fb.tolist()
elif hasattr(fb, "__len__"):
return [FlatbufferToDict(entry, preserve_as_numpy) for entry in fb]
else:
return fb
def CreateDictFromFlatbuffer(buffer_data):
model_obj = schema_fb.Model.GetRootAsModel(buffer_data, 0)
model = schema_fb.ModelT.InitFromObj(model_obj)
return FlatbufferToDict(model, preserve_as_numpy=False)
def create_html(tflite_input, input_is_filepath=True): # pylint: disable=invalid-name
"""Returns html description with the given tflite model.
Args:
tflite_input: TFLite flatbuffer model path or model object.
input_is_filepath: Tells if tflite_input is a model path or a model object.
Returns:
Dump of the given tflite model in HTML format.
Raises:
RuntimeError: If the input is not valid.
"""
# Convert the model into a JSON flatbuffer using flatc (build if doesn't
# exist.
if input_is_filepath:
if not os.path.exists(tflite_input):
raise RuntimeError("Invalid filename %r" % tflite_input)
if tflite_input.endswith(".tflite") or tflite_input.endswith(".bin") or tflite_input.endswith(".tf_lite"):
with open(tflite_input, "rb") as file_handle:
file_data = bytearray(file_handle.read())
data = CreateDictFromFlatbuffer(file_data)
elif tflite_input.endswith(".json"):
data = json.load(open(tflite_input))
else:
raise RuntimeError("Input file was not .tflite or .json")
else:
data = CreateDictFromFlatbuffer(tflite_input)
html = ""
# html += _CSS
html += "
TensorFlow Lite Model"
data["filename"] = tflite_input if input_is_filepath else (
"Null (used model object)") # Avoid special case
toplevel_stuff = [("filename", None), ("version", None),
("description", None)]
html += "
\n"
for key, mapping in toplevel_stuff:
if not mapping:
mapping = lambda x: x
html += "
%s
%s
\n" % (key, mapping(data.get(key)))
html += "
\n"
# Spec on what keys to display
buffer_keys_to_display = [("data", DataSizeMapper())]
operator_keys_to_display = [("builtin_code", BuiltinCodeToName),
("custom_code", NameListToString),
("version", None)]
# Update builtin code fields.
for d in data["operator_codes"]:
d["builtin_code"] = max(d["builtin_code"], d["deprecated_builtin_code"])
for subgraph_idx, g in enumerate(data["subgraphs"]):
# Subgraph local specs on what to display
html += "