#!/usr/bin/env python # Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """This tool creates an html visualization of a TensorFlow Lite graph. Example usage: python visualize.py foo.tflite foo.html """ import json import os import re import sys import numpy as np # pylint: disable=g-import-not-at-top if not os.path.splitext(__file__)[0].endswith( os.path.join("tflite_runtime", "visualize")): # This file is part of tensorflow package. from tensorflow.lite.python import schema_py_generated as schema_fb else: # This file is part of tflite_runtime package. from tflite_runtime import schema_py_generated as schema_fb import gradio as gr from html import escape # A CSS description for making the visualizer # body {font-family: sans-serif; background-color: #fa0;} # # font-family: sans-serif; """""" _CSS = """ """ _D3_HTML_TEMPLATE = """ """ def TensorTypeToName(tensor_type): """Converts a numerical enum to a readable tensor type.""" for name, value in schema_fb.TensorType.__dict__.items(): if value == tensor_type: return name return None def BuiltinCodeToName(code): """Converts a builtin op code enum to a readable name.""" for name, value in schema_fb.BuiltinOperator.__dict__.items(): if value == code: return name return None def NameListToString(name_list): """Converts a list of integers to the equivalent ASCII string.""" if isinstance(name_list, str): return name_list else: result = "" if name_list is not None: for val in name_list: result = result + chr(int(val)) return result class OpCodeMapper: """Maps an opcode index to an op name.""" def __init__(self, data): self.code_to_name = {} for idx, d in enumerate(data["operator_codes"]): self.code_to_name[idx] = BuiltinCodeToName(d["builtin_code"]) if self.code_to_name[idx] == "CUSTOM": self.code_to_name[idx] = NameListToString(d["custom_code"]) def __call__(self, x): if x not in self.code_to_name: s = "" else: s = self.code_to_name[x] return "%s (%d)" % (s, x) class DataSizeMapper: """For buffers, report the number of bytes.""" def __call__(self, x): if x is not None: return "%d bytes" % len(x) else: return "--" class TensorMapper: """Maps a list of tensor indices to a tooltip hoverable indicator of more.""" def __init__(self, subgraph_data): self.data = subgraph_data def __call__(self, x): html = "" if x is None: return html html += "" for i in x: tensor = self.data["tensors"][i] html += str(i) + " " html += NameListToString(tensor["name"]) + " " html += TensorTypeToName(tensor["type"]) + " " html += (repr(tensor["shape"]) if "shape" in tensor else "[]") html += (repr(tensor["shape_signature"]) if "shape_signature" in tensor else "[]") + "
" html += "
" html += repr(x) html += "
" return html def GenerateGraph(subgraph_idx, g, opcode_mapper): """Produces the HTML required to have a d3 visualization of the dag.""" def TensorName(idx): return "t%d" % idx def OpName(idx): return "o%d" % idx edges = [] nodes = [] first = {} second = {} pixel_mult = 200 # TODO(aselle): multiplier for initial placement width_mult = 170 # TODO(aselle): multiplier for initial placement for op_index, op in enumerate(g["operators"] or []): if op["inputs"] is not None: for tensor_input_position, tensor_index in enumerate(op["inputs"]): if tensor_index not in first: first[tensor_index] = ((op_index - 0.5 + 1) * pixel_mult, (tensor_input_position + 1) * width_mult) edges.append({ "source": TensorName(tensor_index), "target": OpName(op_index) }) if op["outputs"] is not None: for tensor_output_position, tensor_index in enumerate(op["outputs"]): if tensor_index not in second: second[tensor_index] = ((op_index + 0.5 + 1) * pixel_mult, (tensor_output_position + 1) * width_mult) edges.append({ "target": TensorName(tensor_index), "source": OpName(op_index) }) nodes.append({ "id": OpName(op_index), "name": opcode_mapper(op["opcode_index"]), "group": 2, "x": pixel_mult, "y": (op_index + 1) * pixel_mult }) for tensor_index, tensor in enumerate(g["tensors"]): initial_y = ( first[tensor_index] if tensor_index in first else second[tensor_index] if tensor_index in second else (0, 0)) nodes.append({ "id": TensorName(tensor_index), "name": "%r (%d)" % (getattr(tensor, "shape", []), tensor_index), "group": 1, "x": initial_y[1], "y": initial_y[0] }) graph_str = json.dumps({"nodes": nodes, "edges": edges}) html = _D3_HTML_TEMPLATE % (graph_str, subgraph_idx) return html def GenerateTableHtml(items, keys_to_print, display_index=True): """Given a list of object values and keys to print, make an HTML table. Args: items: Items to print an array of dicts. keys_to_print: (key, display_fn). `key` is a key in the object. i.e. items[0][key] should exist. display_fn is the mapping function on display. i.e. the displayed html cell will have the string returned by `mapping_fn(items[0][key])`. display_index: add a column which is the index of each row in `items`. Returns: An html table. """ html = "" # Print the list of items html += "\n" html += "\n" if display_index: html += "" for h, mapper in keys_to_print: html += "" % h html += "\n" for idx, tensor in enumerate(items): html += "\n" if display_index: html += "" % idx # print tensor.keys() for h, mapper in keys_to_print: val = tensor[h] if h in tensor else None val = val if mapper is None else mapper(val) html += "\n" % val html += "\n" html += "
index%s
%d%s
\n" return html def CamelCaseToSnakeCase(camel_case_input): """Converts an identifier in CamelCase to snake_case.""" s1 = re.sub("(.)([A-Z][a-z]+)", r"\1_\2", camel_case_input) return re.sub("([a-z0-9])([A-Z])", r"\1_\2", s1).lower() def FlatbufferToDict(fb, preserve_as_numpy): """Converts a hierarchy of FB objects into a nested dict. We avoid transforming big parts of the flat buffer into python arrays. This speeds conversion from ten minutes to a few seconds on big graphs. Args: fb: a flat buffer structure. (i.e. ModelT) preserve_as_numpy: true if all downstream np.arrays should be preserved. false if all downstream np.array should become python arrays Returns: A dictionary representing the flatbuffer rather than a flatbuffer object. """ if isinstance(fb, int) or isinstance(fb, float) or isinstance(fb, str): return fb elif hasattr(fb, "__dict__"): result = {} for attribute_name in dir(fb): attribute = fb.__getattribute__(attribute_name) if not callable(attribute) and attribute_name[0] != "_": snake_name = CamelCaseToSnakeCase(attribute_name) preserve = True if attribute_name == "buffers" else preserve_as_numpy result[snake_name] = FlatbufferToDict(attribute, preserve) return result elif isinstance(fb, np.ndarray): return fb if preserve_as_numpy else fb.tolist() elif hasattr(fb, "__len__"): return [FlatbufferToDict(entry, preserve_as_numpy) for entry in fb] else: return fb def CreateDictFromFlatbuffer(buffer_data): model_obj = schema_fb.Model.GetRootAsModel(buffer_data, 0) model = schema_fb.ModelT.InitFromObj(model_obj) return FlatbufferToDict(model, preserve_as_numpy=False) def create_html(tflite_input, input_is_filepath=True): # pylint: disable=invalid-name """Returns html description with the given tflite model. Args: tflite_input: TFLite flatbuffer model path or model object. input_is_filepath: Tells if tflite_input is a model path or a model object. Returns: Dump of the given tflite model in HTML format. Raises: RuntimeError: If the input is not valid. """ # Convert the model into a JSON flatbuffer using flatc (build if doesn't # exist. if input_is_filepath: if not os.path.exists(tflite_input): raise RuntimeError("Invalid filename %r" % tflite_input) if tflite_input.endswith(".tflite") or tflite_input.endswith(".bin") or tflite_input.endswith(".tf_lite"): with open(tflite_input, "rb") as file_handle: file_data = bytearray(file_handle.read()) data = CreateDictFromFlatbuffer(file_data) elif tflite_input.endswith(".json"): data = json.load(open(tflite_input)) else: raise RuntimeError("Input file was not .tflite or .json") else: data = CreateDictFromFlatbuffer(tflite_input) html = "" # html += _CSS html += "

TensorFlow Lite Model

" data["filename"] = tflite_input if input_is_filepath else ( "Null (used model object)") # Avoid special case toplevel_stuff = [("filename", None), ("version", None), ("description", None)] html += "\n" for key, mapping in toplevel_stuff: if not mapping: mapping = lambda x: x html += "\n" % (key, mapping(data.get(key))) html += "
%s%s
\n" # Spec on what keys to display buffer_keys_to_display = [("data", DataSizeMapper())] operator_keys_to_display = [("builtin_code", BuiltinCodeToName), ("custom_code", NameListToString), ("version", None)] # Update builtin code fields. for d in data["operator_codes"]: d["builtin_code"] = max(d["builtin_code"], d["deprecated_builtin_code"]) for subgraph_idx, g in enumerate(data["subgraphs"]): # Subgraph local specs on what to display html += "
" tensor_mapper = TensorMapper(g) opcode_mapper = OpCodeMapper(data) op_keys_to_display = [("inputs", tensor_mapper), ("outputs", tensor_mapper), ("builtin_options", None), ("opcode_index", opcode_mapper)] tensor_keys_to_display = [("name", NameListToString), ("type", TensorTypeToName), ("shape", None), ("shape_signature", None), ("buffer", None), ("quantization", None)] html += "

Subgraph %d

\n" % subgraph_idx # Inputs and outputs. html += "

Inputs/Outputs

\n" html += GenerateTableHtml([{ "inputs": g["inputs"], "outputs": g["outputs"] }], [("inputs", tensor_mapper), ("outputs", tensor_mapper)], display_index=False) # Print the tensors. html += "

Tensors

\n" html += GenerateTableHtml(g["tensors"], tensor_keys_to_display) # Print the ops. if g["operators"]: html += "

Ops

\n" html += GenerateTableHtml(g["operators"], op_keys_to_display) # Visual graph. html += "\n" % ( subgraph_idx,) html += GenerateGraph(subgraph_idx, g, opcode_mapper) html += "
" # Buffers have no data, but maybe in the future they will html += "

Buffers

\n" html += GenerateTableHtml(data["buffers"], buffer_keys_to_display) # Operator codes html += "

Operator Codes

\n" html += GenerateTableHtml(data["operator_codes"], operator_keys_to_display) # html += "\n" # return f"" html += """ """ return html def main(argv): try: tflite_input = argv[1] html_output = argv[2] except IndexError: print("Usage: %s " % (argv[0])) else: html = create_html(tflite_input) with open(html_output, "w") as output_file: output_file.write(html) def process_file(file): try: html = create_html(file.name) return html except Exception as e: return f"Error: {str(e)}" with gr.Blocks(head=_CSS, ) as demo: gr.Markdown( """ ## TensorFlow Lite Model Visualizer Drag and drop your `.tflite`, `.bin` or `.tf_lite` model files below to analyze them. """) file_input = gr.File(label="Upload TFLite File") html_output = gr.HTML(label="Generated HTML", container=True) file_input.change(process_file, inputs=file_input, outputs=html_output) demo.launch() # if __name__ == "__main__": # main(sys.argv)