Spaces:
Sleeping
Sleeping
Initial commit
Browse files
app.py
ADDED
@@ -0,0 +1,564 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
# ==============================================================================
|
16 |
+
"""This tool creates an html visualization of a TensorFlow Lite graph.
|
17 |
+
|
18 |
+
Example usage:
|
19 |
+
|
20 |
+
python visualize.py foo.tflite foo.html
|
21 |
+
"""
|
22 |
+
|
23 |
+
import json
|
24 |
+
import os
|
25 |
+
import re
|
26 |
+
import sys
|
27 |
+
import numpy as np
|
28 |
+
|
29 |
+
# pylint: disable=g-import-not-at-top
|
30 |
+
if not os.path.splitext(__file__)[0].endswith(
|
31 |
+
os.path.join("tflite_runtime", "visualize")):
|
32 |
+
# This file is part of tensorflow package.
|
33 |
+
from tensorflow.lite.python import schema_py_generated as schema_fb
|
34 |
+
else:
|
35 |
+
# This file is part of tflite_runtime package.
|
36 |
+
from tflite_runtime import schema_py_generated as schema_fb
|
37 |
+
import gradio as gr
|
38 |
+
from html import escape
|
39 |
+
|
40 |
+
# A CSS description for making the visualizer
|
41 |
+
# body {font-family: sans-serif; background-color: #fa0;}
|
42 |
+
# # font-family: sans-serif;
|
43 |
+
"""<style>
|
44 |
+
table {background-color: #eca;}
|
45 |
+
th {background-color: black; color: white;}
|
46 |
+
h1 {
|
47 |
+
background-color: ffaa00;
|
48 |
+
padding:5px;
|
49 |
+
color: black;
|
50 |
+
}
|
51 |
+
|
52 |
+
svg {
|
53 |
+
margin: 10px;
|
54 |
+
border: 2px;
|
55 |
+
border-style: solid;
|
56 |
+
border-color: black;
|
57 |
+
background: white;
|
58 |
+
}
|
59 |
+
|
60 |
+
div {
|
61 |
+
border-radius: 5px;
|
62 |
+
background-color: #fec;
|
63 |
+
padding:5px;
|
64 |
+
margin:5px;
|
65 |
+
}
|
66 |
+
|
67 |
+
.tooltip {color: blue;}
|
68 |
+
.tooltip .tooltipcontent {
|
69 |
+
visibility: hidden;
|
70 |
+
color: black;
|
71 |
+
background-color: yellow;
|
72 |
+
padding: 5px;
|
73 |
+
border-radius: 4px;
|
74 |
+
position: absolute;
|
75 |
+
z-index: 1;
|
76 |
+
}
|
77 |
+
.tooltip:hover .tooltipcontent {
|
78 |
+
visibility: visible;
|
79 |
+
}
|
80 |
+
|
81 |
+
.edges line {
|
82 |
+
stroke: #333;
|
83 |
+
}
|
84 |
+
|
85 |
+
text {
|
86 |
+
font-weight: bold;
|
87 |
+
}
|
88 |
+
|
89 |
+
.nodes text {
|
90 |
+
color: black;
|
91 |
+
pointer-events: none;
|
92 |
+
font-size: 11px;
|
93 |
+
}
|
94 |
+
</style>"""
|
95 |
+
|
96 |
+
_CSS = """
|
97 |
+
<script src="https://d3js.org/d3.v4.min.js"></script>
|
98 |
+
"""
|
99 |
+
|
100 |
+
_D3_HTML_TEMPLATE = """
|
101 |
+
<script>
|
102 |
+
function buildGraph() {
|
103 |
+
// Build graph data
|
104 |
+
var graph = %s;
|
105 |
+
|
106 |
+
var svg = d3.select("#subgraph%d")
|
107 |
+
var width = svg.attr("width");
|
108 |
+
var height = svg.attr("height");
|
109 |
+
// Make the graph scrollable.
|
110 |
+
svg = svg.call(d3.zoom().on("zoom", function() {
|
111 |
+
svg.attr("transform", d3.event.transform);
|
112 |
+
})).append("g");
|
113 |
+
|
114 |
+
|
115 |
+
var color = d3.scaleOrdinal(d3.schemeDark2);
|
116 |
+
|
117 |
+
var simulation = d3.forceSimulation()
|
118 |
+
.force("link", d3.forceLink().id(function(d) {return d.id;}))
|
119 |
+
.force("charge", d3.forceManyBody())
|
120 |
+
.force("center", d3.forceCenter(0.5 * width, 0.5 * height));
|
121 |
+
|
122 |
+
var edge = svg.append("g").attr("class", "edges").selectAll("line")
|
123 |
+
.data(graph.edges).enter().append("path").attr("stroke","black").attr("fill","none")
|
124 |
+
|
125 |
+
// Make the node group
|
126 |
+
var node = svg.selectAll(".nodes")
|
127 |
+
.data(graph.nodes)
|
128 |
+
.enter().append("g")
|
129 |
+
.attr("x", function(d){return d.x})
|
130 |
+
.attr("y", function(d){return d.y})
|
131 |
+
.attr("transform", function(d) {
|
132 |
+
return "translate( " + d.x + ", " + d.y + ")"
|
133 |
+
})
|
134 |
+
.attr("class", "nodes")
|
135 |
+
.call(d3.drag()
|
136 |
+
.on("start", function(d) {
|
137 |
+
if(!d3.event.active) simulation.alphaTarget(1.0).restart();
|
138 |
+
d.fx = d.x;d.fy = d.y;
|
139 |
+
})
|
140 |
+
.on("drag", function(d) {
|
141 |
+
d.fx = d3.event.x; d.fy = d3.event.y;
|
142 |
+
})
|
143 |
+
.on("end", function(d) {
|
144 |
+
if (!d3.event.active) simulation.alphaTarget(0);
|
145 |
+
d.fx = d.fy = null;
|
146 |
+
}));
|
147 |
+
// Within the group, draw a box for the node position and text
|
148 |
+
// on the side.
|
149 |
+
|
150 |
+
var node_width = 150;
|
151 |
+
var node_height = 30;
|
152 |
+
|
153 |
+
node.append("rect")
|
154 |
+
.attr("r", "5px")
|
155 |
+
.attr("width", node_width)
|
156 |
+
.attr("height", node_height)
|
157 |
+
.attr("rx", function(d) { return d.group == 1 ? 1 : 10; })
|
158 |
+
.attr("stroke", "#000000")
|
159 |
+
.attr("fill", function(d) { return d.group == 1 ? "#dddddd" : "#000000"; })
|
160 |
+
node.append("text")
|
161 |
+
.text(function(d) { return d.name; })
|
162 |
+
.attr("x", 5)
|
163 |
+
.attr("y", 20)
|
164 |
+
.attr("fill", function(d) { return d.group == 1 ? "#000000" : "#eeeeee"; })
|
165 |
+
// Setup force parameters and update position callback
|
166 |
+
|
167 |
+
|
168 |
+
var node = svg.selectAll(".nodes")
|
169 |
+
.data(graph.nodes);
|
170 |
+
|
171 |
+
// Bind the links
|
172 |
+
var name_to_g = {}
|
173 |
+
node.each(function(data, index, nodes) {
|
174 |
+
console.log(data.id)
|
175 |
+
name_to_g[data.id] = this;
|
176 |
+
});
|
177 |
+
|
178 |
+
function proc(w, t) {
|
179 |
+
return parseInt(w.getAttribute(t));
|
180 |
+
}
|
181 |
+
edge.attr("d", function(d) {
|
182 |
+
function lerp(t, a, b) {
|
183 |
+
return (1.0-t) * a + t * b;
|
184 |
+
}
|
185 |
+
var x1 = proc(name_to_g[d.source],"x") + node_width /2;
|
186 |
+
var y1 = proc(name_to_g[d.source],"y") + node_height;
|
187 |
+
var x2 = proc(name_to_g[d.target],"x") + node_width /2;
|
188 |
+
var y2 = proc(name_to_g[d.target],"y");
|
189 |
+
var s = "M " + x1 + " " + y1
|
190 |
+
+ " C " + x1 + " " + lerp(.5, y1, y2)
|
191 |
+
+ " " + x2 + " " + lerp(.5, y1, y2)
|
192 |
+
+ " " + x2 + " " + y2
|
193 |
+
return s;
|
194 |
+
});
|
195 |
+
}
|
196 |
+
console.log("Helllo!");
|
197 |
+
buildGraph();
|
198 |
+
</script>
|
199 |
+
"""
|
200 |
+
|
201 |
+
|
202 |
+
def TensorTypeToName(tensor_type):
|
203 |
+
"""Converts a numerical enum to a readable tensor type."""
|
204 |
+
for name, value in schema_fb.TensorType.__dict__.items():
|
205 |
+
if value == tensor_type:
|
206 |
+
return name
|
207 |
+
return None
|
208 |
+
|
209 |
+
|
210 |
+
def BuiltinCodeToName(code):
|
211 |
+
"""Converts a builtin op code enum to a readable name."""
|
212 |
+
for name, value in schema_fb.BuiltinOperator.__dict__.items():
|
213 |
+
if value == code:
|
214 |
+
return name
|
215 |
+
return None
|
216 |
+
|
217 |
+
|
218 |
+
def NameListToString(name_list):
|
219 |
+
"""Converts a list of integers to the equivalent ASCII string."""
|
220 |
+
if isinstance(name_list, str):
|
221 |
+
return name_list
|
222 |
+
else:
|
223 |
+
result = ""
|
224 |
+
if name_list is not None:
|
225 |
+
for val in name_list:
|
226 |
+
result = result + chr(int(val))
|
227 |
+
return result
|
228 |
+
|
229 |
+
|
230 |
+
class OpCodeMapper:
|
231 |
+
"""Maps an opcode index to an op name."""
|
232 |
+
|
233 |
+
def __init__(self, data):
|
234 |
+
self.code_to_name = {}
|
235 |
+
for idx, d in enumerate(data["operator_codes"]):
|
236 |
+
self.code_to_name[idx] = BuiltinCodeToName(d["builtin_code"])
|
237 |
+
if self.code_to_name[idx] == "CUSTOM":
|
238 |
+
self.code_to_name[idx] = NameListToString(d["custom_code"])
|
239 |
+
|
240 |
+
def __call__(self, x):
|
241 |
+
if x not in self.code_to_name:
|
242 |
+
s = "<UNKNOWN>"
|
243 |
+
else:
|
244 |
+
s = self.code_to_name[x]
|
245 |
+
return "%s (%d)" % (s, x)
|
246 |
+
|
247 |
+
|
248 |
+
class DataSizeMapper:
|
249 |
+
"""For buffers, report the number of bytes."""
|
250 |
+
|
251 |
+
def __call__(self, x):
|
252 |
+
if x is not None:
|
253 |
+
return "%d bytes" % len(x)
|
254 |
+
else:
|
255 |
+
return "--"
|
256 |
+
|
257 |
+
|
258 |
+
class TensorMapper:
|
259 |
+
"""Maps a list of tensor indices to a tooltip hoverable indicator of more."""
|
260 |
+
|
261 |
+
def __init__(self, subgraph_data):
|
262 |
+
self.data = subgraph_data
|
263 |
+
|
264 |
+
def __call__(self, x):
|
265 |
+
html = ""
|
266 |
+
if x is None:
|
267 |
+
return html
|
268 |
+
|
269 |
+
html += "<span class='tooltip'><span class='tooltipcontent'>"
|
270 |
+
for i in x:
|
271 |
+
tensor = self.data["tensors"][i]
|
272 |
+
html += str(i) + " "
|
273 |
+
html += NameListToString(tensor["name"]) + " "
|
274 |
+
html += TensorTypeToName(tensor["type"]) + " "
|
275 |
+
html += (repr(tensor["shape"]) if "shape" in tensor else "[]")
|
276 |
+
html += (repr(tensor["shape_signature"])
|
277 |
+
if "shape_signature" in tensor else "[]") + "<br>"
|
278 |
+
html += "</span>"
|
279 |
+
html += repr(x)
|
280 |
+
html += "</span>"
|
281 |
+
return html
|
282 |
+
|
283 |
+
|
284 |
+
def GenerateGraph(subgraph_idx, g, opcode_mapper):
|
285 |
+
"""Produces the HTML required to have a d3 visualization of the dag."""
|
286 |
+
|
287 |
+
def TensorName(idx):
|
288 |
+
return "t%d" % idx
|
289 |
+
|
290 |
+
def OpName(idx):
|
291 |
+
return "o%d" % idx
|
292 |
+
|
293 |
+
edges = []
|
294 |
+
nodes = []
|
295 |
+
first = {}
|
296 |
+
second = {}
|
297 |
+
pixel_mult = 200 # TODO(aselle): multiplier for initial placement
|
298 |
+
width_mult = 170 # TODO(aselle): multiplier for initial placement
|
299 |
+
for op_index, op in enumerate(g["operators"] or []):
|
300 |
+
if op["inputs"] is not None:
|
301 |
+
for tensor_input_position, tensor_index in enumerate(op["inputs"]):
|
302 |
+
if tensor_index not in first:
|
303 |
+
first[tensor_index] = ((op_index - 0.5 + 1) * pixel_mult,
|
304 |
+
(tensor_input_position + 1) * width_mult)
|
305 |
+
edges.append({
|
306 |
+
"source": TensorName(tensor_index),
|
307 |
+
"target": OpName(op_index)
|
308 |
+
})
|
309 |
+
if op["outputs"] is not None:
|
310 |
+
for tensor_output_position, tensor_index in enumerate(op["outputs"]):
|
311 |
+
if tensor_index not in second:
|
312 |
+
second[tensor_index] = ((op_index + 0.5 + 1) * pixel_mult,
|
313 |
+
(tensor_output_position + 1) * width_mult)
|
314 |
+
edges.append({
|
315 |
+
"target": TensorName(tensor_index),
|
316 |
+
"source": OpName(op_index)
|
317 |
+
})
|
318 |
+
|
319 |
+
nodes.append({
|
320 |
+
"id": OpName(op_index),
|
321 |
+
"name": opcode_mapper(op["opcode_index"]),
|
322 |
+
"group": 2,
|
323 |
+
"x": pixel_mult,
|
324 |
+
"y": (op_index + 1) * pixel_mult
|
325 |
+
})
|
326 |
+
for tensor_index, tensor in enumerate(g["tensors"]):
|
327 |
+
initial_y = (
|
328 |
+
first[tensor_index] if tensor_index in first else
|
329 |
+
second[tensor_index] if tensor_index in second else (0, 0))
|
330 |
+
|
331 |
+
nodes.append({
|
332 |
+
"id": TensorName(tensor_index),
|
333 |
+
"name": "%r (%d)" % (getattr(tensor, "shape", []), tensor_index),
|
334 |
+
"group": 1,
|
335 |
+
"x": initial_y[1],
|
336 |
+
"y": initial_y[0]
|
337 |
+
})
|
338 |
+
graph_str = json.dumps({"nodes": nodes, "edges": edges})
|
339 |
+
|
340 |
+
html = _D3_HTML_TEMPLATE % (graph_str, subgraph_idx)
|
341 |
+
return html
|
342 |
+
|
343 |
+
|
344 |
+
def GenerateTableHtml(items, keys_to_print, display_index=True):
|
345 |
+
"""Given a list of object values and keys to print, make an HTML table.
|
346 |
+
|
347 |
+
Args:
|
348 |
+
items: Items to print an array of dicts.
|
349 |
+
keys_to_print: (key, display_fn). `key` is a key in the object. i.e.
|
350 |
+
items[0][key] should exist. display_fn is the mapping function on display.
|
351 |
+
i.e. the displayed html cell will have the string returned by
|
352 |
+
`mapping_fn(items[0][key])`.
|
353 |
+
display_index: add a column which is the index of each row in `items`.
|
354 |
+
|
355 |
+
Returns:
|
356 |
+
An html table.
|
357 |
+
"""
|
358 |
+
html = ""
|
359 |
+
# Print the list of items
|
360 |
+
html += "<table><tr>\n"
|
361 |
+
html += "<tr>\n"
|
362 |
+
if display_index:
|
363 |
+
html += "<th>index</th>"
|
364 |
+
for h, mapper in keys_to_print:
|
365 |
+
html += "<th>%s</th>" % h
|
366 |
+
html += "</tr>\n"
|
367 |
+
for idx, tensor in enumerate(items):
|
368 |
+
html += "<tr>\n"
|
369 |
+
if display_index:
|
370 |
+
html += "<td>%d</td>" % idx
|
371 |
+
# print tensor.keys()
|
372 |
+
for h, mapper in keys_to_print:
|
373 |
+
val = tensor[h] if h in tensor else None
|
374 |
+
val = val if mapper is None else mapper(val)
|
375 |
+
html += "<td>%s</td>\n" % val
|
376 |
+
|
377 |
+
html += "</tr>\n"
|
378 |
+
html += "</table>\n"
|
379 |
+
return html
|
380 |
+
|
381 |
+
|
382 |
+
def CamelCaseToSnakeCase(camel_case_input):
|
383 |
+
"""Converts an identifier in CamelCase to snake_case."""
|
384 |
+
s1 = re.sub("(.)([A-Z][a-z]+)", r"\1_\2", camel_case_input)
|
385 |
+
return re.sub("([a-z0-9])([A-Z])", r"\1_\2", s1).lower()
|
386 |
+
|
387 |
+
|
388 |
+
def FlatbufferToDict(fb, preserve_as_numpy):
|
389 |
+
"""Converts a hierarchy of FB objects into a nested dict.
|
390 |
+
|
391 |
+
We avoid transforming big parts of the flat buffer into python arrays. This
|
392 |
+
speeds conversion from ten minutes to a few seconds on big graphs.
|
393 |
+
|
394 |
+
Args:
|
395 |
+
fb: a flat buffer structure. (i.e. ModelT)
|
396 |
+
preserve_as_numpy: true if all downstream np.arrays should be preserved.
|
397 |
+
false if all downstream np.array should become python arrays
|
398 |
+
Returns:
|
399 |
+
A dictionary representing the flatbuffer rather than a flatbuffer object.
|
400 |
+
"""
|
401 |
+
if isinstance(fb, int) or isinstance(fb, float) or isinstance(fb, str):
|
402 |
+
return fb
|
403 |
+
elif hasattr(fb, "__dict__"):
|
404 |
+
result = {}
|
405 |
+
for attribute_name in dir(fb):
|
406 |
+
attribute = fb.__getattribute__(attribute_name)
|
407 |
+
if not callable(attribute) and attribute_name[0] != "_":
|
408 |
+
snake_name = CamelCaseToSnakeCase(attribute_name)
|
409 |
+
preserve = True if attribute_name == "buffers" else preserve_as_numpy
|
410 |
+
result[snake_name] = FlatbufferToDict(attribute, preserve)
|
411 |
+
return result
|
412 |
+
elif isinstance(fb, np.ndarray):
|
413 |
+
return fb if preserve_as_numpy else fb.tolist()
|
414 |
+
elif hasattr(fb, "__len__"):
|
415 |
+
return [FlatbufferToDict(entry, preserve_as_numpy) for entry in fb]
|
416 |
+
else:
|
417 |
+
return fb
|
418 |
+
|
419 |
+
|
420 |
+
def CreateDictFromFlatbuffer(buffer_data):
|
421 |
+
model_obj = schema_fb.Model.GetRootAsModel(buffer_data, 0)
|
422 |
+
model = schema_fb.ModelT.InitFromObj(model_obj)
|
423 |
+
return FlatbufferToDict(model, preserve_as_numpy=False)
|
424 |
+
|
425 |
+
|
426 |
+
def create_html(tflite_input, input_is_filepath=True): # pylint: disable=invalid-name
|
427 |
+
"""Returns html description with the given tflite model.
|
428 |
+
|
429 |
+
Args:
|
430 |
+
tflite_input: TFLite flatbuffer model path or model object.
|
431 |
+
input_is_filepath: Tells if tflite_input is a model path or a model object.
|
432 |
+
|
433 |
+
Returns:
|
434 |
+
Dump of the given tflite model in HTML format.
|
435 |
+
|
436 |
+
Raises:
|
437 |
+
RuntimeError: If the input is not valid.
|
438 |
+
"""
|
439 |
+
|
440 |
+
# Convert the model into a JSON flatbuffer using flatc (build if doesn't
|
441 |
+
# exist.
|
442 |
+
if input_is_filepath:
|
443 |
+
if not os.path.exists(tflite_input):
|
444 |
+
raise RuntimeError("Invalid filename %r" % tflite_input)
|
445 |
+
if tflite_input.endswith(".tflite") or tflite_input.endswith(".bin") or tflite_input.endswith(".tf_lite"):
|
446 |
+
with open(tflite_input, "rb") as file_handle:
|
447 |
+
file_data = bytearray(file_handle.read())
|
448 |
+
data = CreateDictFromFlatbuffer(file_data)
|
449 |
+
elif tflite_input.endswith(".json"):
|
450 |
+
data = json.load(open(tflite_input))
|
451 |
+
else:
|
452 |
+
raise RuntimeError("Input file was not .tflite or .json")
|
453 |
+
else:
|
454 |
+
data = CreateDictFromFlatbuffer(tflite_input)
|
455 |
+
html = ""
|
456 |
+
# html += _CSS
|
457 |
+
html += "<h1>TensorFlow Lite Model</h2>"
|
458 |
+
|
459 |
+
data["filename"] = tflite_input if input_is_filepath else (
|
460 |
+
"Null (used model object)") # Avoid special case
|
461 |
+
|
462 |
+
toplevel_stuff = [("filename", None), ("version", None),
|
463 |
+
("description", None)]
|
464 |
+
|
465 |
+
html += "<table>\n"
|
466 |
+
for key, mapping in toplevel_stuff:
|
467 |
+
if not mapping:
|
468 |
+
mapping = lambda x: x
|
469 |
+
html += "<tr><th>%s</th><td>%s</td></tr>\n" % (key, mapping(data.get(key)))
|
470 |
+
html += "</table>\n"
|
471 |
+
|
472 |
+
# Spec on what keys to display
|
473 |
+
buffer_keys_to_display = [("data", DataSizeMapper())]
|
474 |
+
operator_keys_to_display = [("builtin_code", BuiltinCodeToName),
|
475 |
+
("custom_code", NameListToString),
|
476 |
+
("version", None)]
|
477 |
+
|
478 |
+
# Update builtin code fields.
|
479 |
+
for d in data["operator_codes"]:
|
480 |
+
d["builtin_code"] = max(d["builtin_code"], d["deprecated_builtin_code"])
|
481 |
+
|
482 |
+
for subgraph_idx, g in enumerate(data["subgraphs"]):
|
483 |
+
# Subgraph local specs on what to display
|
484 |
+
html += "<div class='subgraph'>"
|
485 |
+
tensor_mapper = TensorMapper(g)
|
486 |
+
opcode_mapper = OpCodeMapper(data)
|
487 |
+
op_keys_to_display = [("inputs", tensor_mapper), ("outputs", tensor_mapper),
|
488 |
+
("builtin_options", None),
|
489 |
+
("opcode_index", opcode_mapper)]
|
490 |
+
tensor_keys_to_display = [("name", NameListToString),
|
491 |
+
("type", TensorTypeToName), ("shape", None),
|
492 |
+
("shape_signature", None), ("buffer", None),
|
493 |
+
("quantization", None)]
|
494 |
+
|
495 |
+
html += "<h2>Subgraph %d</h2>\n" % subgraph_idx
|
496 |
+
|
497 |
+
# Inputs and outputs.
|
498 |
+
html += "<h3>Inputs/Outputs</h3>\n"
|
499 |
+
html += GenerateTableHtml([{
|
500 |
+
"inputs": g["inputs"],
|
501 |
+
"outputs": g["outputs"]
|
502 |
+
}], [("inputs", tensor_mapper), ("outputs", tensor_mapper)],
|
503 |
+
display_index=False)
|
504 |
+
|
505 |
+
# Print the tensors.
|
506 |
+
html += "<h3>Tensors</h3>\n"
|
507 |
+
html += GenerateTableHtml(g["tensors"], tensor_keys_to_display)
|
508 |
+
|
509 |
+
# Print the ops.
|
510 |
+
if g["operators"]:
|
511 |
+
html += "<h3>Ops</h3>\n"
|
512 |
+
html += GenerateTableHtml(g["operators"], op_keys_to_display)
|
513 |
+
|
514 |
+
# Visual graph.
|
515 |
+
html += "<svg id='subgraph%d' width='1600' height='900'></svg>\n" % (
|
516 |
+
subgraph_idx,)
|
517 |
+
html += GenerateGraph(subgraph_idx, g, opcode_mapper)
|
518 |
+
html += "</div>"
|
519 |
+
|
520 |
+
# Buffers have no data, but maybe in the future they will
|
521 |
+
html += "<h2>Buffers</h2>\n"
|
522 |
+
html += GenerateTableHtml(data["buffers"], buffer_keys_to_display)
|
523 |
+
|
524 |
+
# Operator codes
|
525 |
+
html += "<h2>Operator Codes</h2>\n"
|
526 |
+
html += GenerateTableHtml(data["operator_codes"], operator_keys_to_display)
|
527 |
+
|
528 |
+
# html += "</body></html>\n"
|
529 |
+
|
530 |
+
# return f"<iframe src={escape(html)} ></iframe>"
|
531 |
+
|
532 |
+
html += """ <script src="https://d3js.org/d3.v4.min.js"></script> """
|
533 |
+
return html
|
534 |
+
|
535 |
+
|
536 |
+
def main(argv):
|
537 |
+
try:
|
538 |
+
tflite_input = argv[1]
|
539 |
+
html_output = argv[2]
|
540 |
+
except IndexError:
|
541 |
+
print("Usage: %s <input tflite> <output html>" % (argv[0]))
|
542 |
+
else:
|
543 |
+
html = create_html(tflite_input)
|
544 |
+
with open(html_output, "w") as output_file:
|
545 |
+
output_file.write(html)
|
546 |
+
|
547 |
+
def process_file(file):
|
548 |
+
try:
|
549 |
+
html = create_html(file.name)
|
550 |
+
return html
|
551 |
+
except Exception as e:
|
552 |
+
return f"Error: {str(e)}"
|
553 |
+
|
554 |
+
with gr.Blocks(head=_CSS, ) as demo:
|
555 |
+
gr.Markdown("## TensorFlow Lite Model Visualizer")
|
556 |
+
file_input = gr.File(label="Upload TFLite File")
|
557 |
+
html_output = gr.HTML(label="Generated HTML", container=True)
|
558 |
+
file_input.change(process_file, inputs=file_input, outputs=html_output)
|
559 |
+
|
560 |
+
demo.launch()
|
561 |
+
|
562 |
+
|
563 |
+
# if __name__ == "__main__":
|
564 |
+
# main(sys.argv)
|