Tonyivan commited on
Commit
234c3c3
·
verified ·
1 Parent(s): 3e23390

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +1 -19
app.py CHANGED
@@ -81,30 +81,12 @@ async def t5answer(request: T5QuestionRequest):
81
  @app.post("/modify_query2", response_model=ModifyQueryResponse)
82
  async def modify_query2(request: ModifyQueryRequest):
83
  try:
84
- embeddings = optimize_embedding([request.query_string])
85
  return ModifyQueryResponse(embeddings=embeddings[0].tolist())
86
  except Exception as e:
87
  raise HTTPException(status_code=500, detail=str(e))
88
 
89
 
90
- def optimize_embedding(texts, precision='uint8'):
91
- # Step 1: Generate embeddings with 384 dimensions
92
- embeddings = model.encode(texts)
93
-
94
- # Step 2: Normalize embeddings to [0, 1] range
95
- embeddings_min = embeddings.min(axis=1, keepdims=True)
96
- embeddings_max = embeddings.max(axis=1, keepdims=True)
97
- normalized_embeddings = (embeddings - embeddings_min) / (embeddings_max - embeddings_min + 1e-8)
98
-
99
- # Step 3: Scale normalized embeddings to fit within the range of uint8 or uint16
100
- if precision == 'uint8':
101
- scaled_embeddings = (normalized_embeddings * 255).astype('uint8')
102
- elif precision == 'uint16':
103
- scaled_embeddings = (normalized_embeddings * 65535).astype('uint16')
104
- else:
105
- raise ValueError("Unsupported precision. Use 'uint8' or 'uint16'.")
106
-
107
- return scaled_embeddings
108
 
109
  if __name__ == "__main__":
110
  import uvicorn
 
81
  @app.post("/modify_query2", response_model=ModifyQueryResponse)
82
  async def modify_query2(request: ModifyQueryRequest):
83
  try:
84
+ embeddings = model.encode([request.query_string])
85
  return ModifyQueryResponse(embeddings=embeddings[0].tolist())
86
  except Exception as e:
87
  raise HTTPException(status_code=500, detail=str(e))
88
 
89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
90
 
91
  if __name__ == "__main__":
92
  import uvicorn