Spaces:
Running
Running
add sliders
Browse files
app.py
CHANGED
@@ -131,6 +131,7 @@ def plot_bbox(image, data, use_quad_boxes=False):
|
|
131 |
plt.text(x1, y1, label, color='white', fontsize=8, bbox=dict(facecolor='red', alpha=0.5))
|
132 |
|
133 |
ax.axis('off')
|
|
|
134 |
return fig
|
135 |
|
136 |
def draw_ocr_bboxes(image, prediction):
|
@@ -145,6 +146,7 @@ def draw_ocr_bboxes(image, prediction):
|
|
145 |
"{}".format(label),
|
146 |
align="right",
|
147 |
fill=color)
|
|
|
148 |
return image
|
149 |
|
150 |
def draw_bounding_boxes(image, quad_boxes, labels, color=(0, 255, 0), thickness=2):
|
@@ -161,12 +163,7 @@ def draw_bounding_boxes(image, quad_boxes, labels, color=(0, 255, 0), thickness=
|
|
161 |
|
162 |
def process_image(image, task):
|
163 |
prompt = TASK_PROMPTS[task]
|
164 |
-
# # Print the inputs for debugging
|
165 |
-
# print(f"\n--- Processing Task: {task} ---")
|
166 |
-
# print(f"Prompt: {prompt}")
|
167 |
inputs = processor(text=prompt, images=image, return_tensors="pt").to(device, torch_dtype)
|
168 |
-
# # Print the input tensors for debugging
|
169 |
-
# print(f"Model Input: {inputs}")
|
170 |
generated_ids = model.generate(
|
171 |
**inputs,
|
172 |
max_new_tokens=1024,
|
@@ -175,24 +172,38 @@ def process_image(image, task):
|
|
175 |
)
|
176 |
|
177 |
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
|
178 |
-
# # Print the raw generated output for debugging
|
179 |
-
# print(f"Raw Model Output: {generated_text}")
|
180 |
parsed_answer = processor.post_process_generation(generated_text, task=prompt, image_size=(image.width, image.height))
|
181 |
-
|
182 |
-
# print(f"Parsed Answer: {parsed_answer}")
|
183 |
return parsed_answer
|
184 |
|
185 |
|
186 |
-
def main_process(image, task):
|
187 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
188 |
|
|
|
|
|
|
|
|
|
|
|
189 |
if task in IMAGE_TASKS:
|
190 |
if task == "📸✍🏻OCR with Region":
|
191 |
fig = plot_bbox(image, result.get('<OCR_WITH_REGION>', {}), use_quad_boxes=True)
|
192 |
output_image = fig_to_pil(fig)
|
193 |
text_output = result.get('<OCR_WITH_REGION>', {}).get('recognized_text', 'No text found')
|
194 |
-
# # Debugging: Print the recognized text
|
195 |
-
# print(f"Recognized Text: {text_output}")
|
196 |
return output_image, gr.update(visible=True), text_output, gr.update(visible=False)
|
197 |
else:
|
198 |
fig = plot_bbox(image, result.get(TASK_PROMPTS[task], {}))
|
@@ -201,7 +212,6 @@ def main_process(image, task):
|
|
201 |
else:
|
202 |
return None, gr.update(visible=False), str(result), gr.update(visible=True)
|
203 |
|
204 |
-
|
205 |
def reset_outputs():
|
206 |
return None, gr.update(visible=False), None, gr.update(visible=True)
|
207 |
|
@@ -224,20 +234,21 @@ with gr.Blocks(title="Tonic's 🙏🏻PLeIAs/📸📈✍🏻Florence-PDF") as if
|
|
224 |
image_input = gr.Image(type="pil", label="Input Image")
|
225 |
task_dropdown = gr.Dropdown(list(TASK_PROMPTS.keys()), label="Task", value="✍🏻Caption")
|
226 |
with gr.Row():
|
227 |
-
submit_button = gr.Button("Process")
|
228 |
-
reset_button = gr.Button("Reset")
|
|
|
|
|
|
|
|
|
|
|
|
|
229 |
with gr.Column(scale=1):
|
230 |
output_image = gr.Image(label="🙏🏻PLeIAs/📸📈✍🏻Florence-PDF", visible=False)
|
231 |
output_text = gr.Textbox(label="🙏🏻PLeIAs/📸📈✍🏻Florence-PDF", visible=True)
|
232 |
-
|
233 |
-
def process_and_update(image, task):
|
234 |
-
if image is None:
|
235 |
-
return None, gr.update(visible=False), "Please upload an image first.", gr.update(visible=True)
|
236 |
-
return main_process(image, task)
|
237 |
|
238 |
submit_button.click(
|
239 |
fn=process_and_update,
|
240 |
-
inputs=[image_input, task_dropdown],
|
241 |
outputs=[output_image, output_image, output_text, output_text]
|
242 |
)
|
243 |
|
|
|
131 |
plt.text(x1, y1, label, color='white', fontsize=8, bbox=dict(facecolor='red', alpha=0.5))
|
132 |
|
133 |
ax.axis('off')
|
134 |
+
|
135 |
return fig
|
136 |
|
137 |
def draw_ocr_bboxes(image, prediction):
|
|
|
146 |
"{}".format(label),
|
147 |
align="right",
|
148 |
fill=color)
|
149 |
+
|
150 |
return image
|
151 |
|
152 |
def draw_bounding_boxes(image, quad_boxes, labels, color=(0, 255, 0), thickness=2):
|
|
|
163 |
|
164 |
def process_image(image, task):
|
165 |
prompt = TASK_PROMPTS[task]
|
|
|
|
|
|
|
166 |
inputs = processor(text=prompt, images=image, return_tensors="pt").to(device, torch_dtype)
|
|
|
|
|
167 |
generated_ids = model.generate(
|
168 |
**inputs,
|
169 |
max_new_tokens=1024,
|
|
|
172 |
)
|
173 |
|
174 |
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
|
|
|
|
|
175 |
parsed_answer = processor.post_process_generation(generated_text, task=prompt, image_size=(image.width, image.height))
|
176 |
+
|
|
|
177 |
return parsed_answer
|
178 |
|
179 |
|
180 |
+
def main_process(image, task, top_k, top_p, repetition_penalty, num_beams, max_tokens):
|
181 |
+
prompt = TASK_PROMPTS[task]
|
182 |
+
inputs = processor(text=prompt, images=image, return_tensors="pt").to(device, torch_dtype)
|
183 |
+
generated_ids = model.generate(
|
184 |
+
**inputs,
|
185 |
+
max_new_tokens=max_tokens,
|
186 |
+
num_beams=num_beams,
|
187 |
+
do_sample=True,
|
188 |
+
top_k=top_k,
|
189 |
+
top_p=top_p,
|
190 |
+
repetition_penalty=repetition_penalty
|
191 |
+
)
|
192 |
+
|
193 |
+
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
|
194 |
+
parsed_answer = processor.post_process_generation(generated_text, task=prompt, image_size=(image.width, image.height))
|
195 |
+
return parsed_answer
|
196 |
|
197 |
+
def process_and_update(image, task, top_k, top_p, repetition_penalty, num_beams, max_tokens):
|
198 |
+
if image is None:
|
199 |
+
return None, gr.update(visible=False), "Please upload an image first.", gr.update(visible=True)
|
200 |
+
result = main_process(image, task, top_k, top_p, repetition_penalty, num_beams, max_tokens)
|
201 |
+
|
202 |
if task in IMAGE_TASKS:
|
203 |
if task == "📸✍🏻OCR with Region":
|
204 |
fig = plot_bbox(image, result.get('<OCR_WITH_REGION>', {}), use_quad_boxes=True)
|
205 |
output_image = fig_to_pil(fig)
|
206 |
text_output = result.get('<OCR_WITH_REGION>', {}).get('recognized_text', 'No text found')
|
|
|
|
|
207 |
return output_image, gr.update(visible=True), text_output, gr.update(visible=False)
|
208 |
else:
|
209 |
fig = plot_bbox(image, result.get(TASK_PROMPTS[task], {}))
|
|
|
212 |
else:
|
213 |
return None, gr.update(visible=False), str(result), gr.update(visible=True)
|
214 |
|
|
|
215 |
def reset_outputs():
|
216 |
return None, gr.update(visible=False), None, gr.update(visible=True)
|
217 |
|
|
|
234 |
image_input = gr.Image(type="pil", label="Input Image")
|
235 |
task_dropdown = gr.Dropdown(list(TASK_PROMPTS.keys()), label="Task", value="✍🏻Caption")
|
236 |
with gr.Row():
|
237 |
+
submit_button = gr.Button("📸📈✍🏻Process")
|
238 |
+
reset_button = gr.Button("♻️Reset")
|
239 |
+
with gr.Accordion("🧪Advanced Settings", open=False):
|
240 |
+
top_k = gr.Slider(minimum=1, maximum=100, value=50, step=1, label="Top-k")
|
241 |
+
top_p = gr.Slider(minimum=0.0, maximum=1.0, value=1.0, step=0.01, label="Top-p")
|
242 |
+
repetition_penalty = gr.Slider(minimum=1.0, maximum=2.0, value=1.0, step=0.01, label="Repetition Penalty")
|
243 |
+
num_beams = gr.Slider(minimum=1, maximum=6, value=3, step=1, label="Number of Beams")
|
244 |
+
max_tokens = gr.Slider(minimum=1, maximum=1024, value=1000, step=1, label="Max Tokens")
|
245 |
with gr.Column(scale=1):
|
246 |
output_image = gr.Image(label="🙏🏻PLeIAs/📸📈✍🏻Florence-PDF", visible=False)
|
247 |
output_text = gr.Textbox(label="🙏🏻PLeIAs/📸📈✍🏻Florence-PDF", visible=True)
|
|
|
|
|
|
|
|
|
|
|
248 |
|
249 |
submit_button.click(
|
250 |
fn=process_and_update,
|
251 |
+
inputs=[image_input, task_dropdown, top_k, top_p, repetition_penalty, num_beams, max_tokens],
|
252 |
outputs=[output_image, output_image, output_text, output_text]
|
253 |
)
|
254 |
|