Spaces:
Paused
Paused
model loading fix
Browse files
app.py
CHANGED
@@ -174,16 +174,39 @@ class PixtralModel(nn.Module):
|
|
174 |
else:
|
175 |
return vision_output
|
176 |
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
187 |
tokenizer = MistralTokenizer.from_model("pixtral")
|
188 |
|
189 |
def preprocess_image(image):
|
@@ -206,39 +229,12 @@ def gpu_memory_manager():
|
|
206 |
torch.cuda.empty_cache()
|
207 |
gc.collect()
|
208 |
|
209 |
-
def cuda_error_handler(func):
|
210 |
-
def wrapper(*args, **kwargs):
|
211 |
-
try:
|
212 |
-
return func(*args, **kwargs)
|
213 |
-
except RuntimeError as e:
|
214 |
-
if "CUDA" in str(e):
|
215 |
-
print(f"CUDA error occurred: {str(e)}")
|
216 |
-
print("Attempting to recover...")
|
217 |
-
torch.cuda.empty_cache()
|
218 |
-
gc.collect()
|
219 |
-
try:
|
220 |
-
return func(*args, **kwargs)
|
221 |
-
except Exception as e2:
|
222 |
-
print(f"Recovery failed. Error: {str(e2)}")
|
223 |
-
return f"An error occurred: {str(e2)}", 0, 0
|
224 |
-
else:
|
225 |
-
raise
|
226 |
-
except Exception as e:
|
227 |
-
print(f"An unexpected error occurred: {str(e)}")
|
228 |
-
traceback.print_exc()
|
229 |
-
return f"An unexpected error occurred: {str(e)}", 0, 0
|
230 |
-
return wrapper
|
231 |
-
|
232 |
@spaces.GPU()
|
233 |
-
@cuda_error_handler
|
234 |
def generate_text(image, prompt, max_tokens):
|
235 |
try:
|
236 |
with gpu_memory_manager():
|
237 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
238 |
-
# Use load_img here
|
239 |
image_pil = load_img(image, output_type="pil", input_type="auto")
|
240 |
image_tensor = preprocess_image(image_pil).to(device)
|
241 |
-
model.to(device)
|
242 |
|
243 |
tokenized = tokenizer.encode_chat_completion(
|
244 |
ChatCompletionRequest(
|
@@ -260,8 +256,6 @@ def generate_text(image, prompt, max_tokens):
|
|
260 |
|
261 |
generated_text = tokenizer.decode(generated_ids[0].tolist())
|
262 |
|
263 |
-
# # Move model back to CPU and clear CUDA memory
|
264 |
-
# model.to("cpu")
|
265 |
torch.cuda.empty_cache()
|
266 |
|
267 |
return generated_text, len(generated_ids[0]), 1
|
@@ -271,17 +265,13 @@ def generate_text(image, prompt, max_tokens):
|
|
271 |
return f"Error: {str(e)}", 0, 0
|
272 |
|
273 |
@spaces.GPU()
|
274 |
-
@cuda_error_handler
|
275 |
def calculate_similarity(image1, image2):
|
276 |
try:
|
277 |
with gpu_memory_manager():
|
278 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
279 |
-
# Use load_img for both images
|
280 |
pil_image1 = load_img(image1, output_type="pil", input_type="auto")
|
281 |
pil_image2 = load_img(image2, output_type="pil", input_type="auto")
|
282 |
tensor1 = preprocess_image(pil_image1).to(device)
|
283 |
tensor2 = preprocess_image(pil_image2).to(device)
|
284 |
-
model.to(device)
|
285 |
|
286 |
with torch.no_grad():
|
287 |
embedding1 = model(tensor1).mean(dim=1)
|
@@ -289,8 +279,6 @@ def calculate_similarity(image1, image2):
|
|
289 |
|
290 |
similarity = F.cosine_similarity(embedding1, embedding2).item()
|
291 |
|
292 |
-
# # Move model back to CPU and clear CUDA memory
|
293 |
-
# model.to("cpu")
|
294 |
torch.cuda.empty_cache()
|
295 |
|
296 |
return similarity
|
@@ -298,6 +286,35 @@ def calculate_similarity(image1, image2):
|
|
298 |
print(f"Error in calculate_similarity: {str(e)}")
|
299 |
traceback.print_exc()
|
300 |
return f"Error: {str(e)}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
301 |
|
302 |
with gr.Blocks() as demo:
|
303 |
gr.Markdown(title)
|
|
|
174 |
else:
|
175 |
return vision_output
|
176 |
|
177 |
+
|
178 |
+
@contextmanager
|
179 |
+
def gpu_memory_manager():
|
180 |
+
try:
|
181 |
+
torch.cuda.empty_cache()
|
182 |
+
yield
|
183 |
+
finally:
|
184 |
+
torch.cuda.empty_cache()
|
185 |
+
gc.collect()
|
186 |
+
|
187 |
+
def load_model_with_fallback(params, model_path):
|
188 |
+
try:
|
189 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
190 |
+
model = PixtralModel(params)
|
191 |
+
with safe_open(f'{model_path}/consolidated.safetensors', framework="pt", device="cpu") as f:
|
192 |
+
for name, param in model.named_parameters():
|
193 |
+
if name in f.keys():
|
194 |
+
param.data = f.get_tensor(name)
|
195 |
+
model.eval()
|
196 |
+
model.to(device)
|
197 |
+
return model, device
|
198 |
+
except RuntimeError as e:
|
199 |
+
print(f"Error loading model on GPU: {str(e)}")
|
200 |
+
print("Falling back to CPU...")
|
201 |
+
model = PixtralModel(params)
|
202 |
+
with safe_open(f'{model_path}/consolidated.safetensors', framework="pt", device="cpu") as f:
|
203 |
+
for name, param in model.named_parameters():
|
204 |
+
if name in f.keys():
|
205 |
+
param.data = f.get_tensor(name)
|
206 |
+
model.eval()
|
207 |
+
return model, torch.device("cpu")
|
208 |
+
|
209 |
+
model, device = load_model_with_fallback(params, model_path)
|
210 |
tokenizer = MistralTokenizer.from_model("pixtral")
|
211 |
|
212 |
def preprocess_image(image):
|
|
|
229 |
torch.cuda.empty_cache()
|
230 |
gc.collect()
|
231 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
232 |
@spaces.GPU()
|
|
|
233 |
def generate_text(image, prompt, max_tokens):
|
234 |
try:
|
235 |
with gpu_memory_manager():
|
|
|
|
|
236 |
image_pil = load_img(image, output_type="pil", input_type="auto")
|
237 |
image_tensor = preprocess_image(image_pil).to(device)
|
|
|
238 |
|
239 |
tokenized = tokenizer.encode_chat_completion(
|
240 |
ChatCompletionRequest(
|
|
|
256 |
|
257 |
generated_text = tokenizer.decode(generated_ids[0].tolist())
|
258 |
|
|
|
|
|
259 |
torch.cuda.empty_cache()
|
260 |
|
261 |
return generated_text, len(generated_ids[0]), 1
|
|
|
265 |
return f"Error: {str(e)}", 0, 0
|
266 |
|
267 |
@spaces.GPU()
|
|
|
268 |
def calculate_similarity(image1, image2):
|
269 |
try:
|
270 |
with gpu_memory_manager():
|
|
|
|
|
271 |
pil_image1 = load_img(image1, output_type="pil", input_type="auto")
|
272 |
pil_image2 = load_img(image2, output_type="pil", input_type="auto")
|
273 |
tensor1 = preprocess_image(pil_image1).to(device)
|
274 |
tensor2 = preprocess_image(pil_image2).to(device)
|
|
|
275 |
|
276 |
with torch.no_grad():
|
277 |
embedding1 = model(tensor1).mean(dim=1)
|
|
|
279 |
|
280 |
similarity = F.cosine_similarity(embedding1, embedding2).item()
|
281 |
|
|
|
|
|
282 |
torch.cuda.empty_cache()
|
283 |
|
284 |
return similarity
|
|
|
286 |
print(f"Error in calculate_similarity: {str(e)}")
|
287 |
traceback.print_exc()
|
288 |
return f"Error: {str(e)}"
|
289 |
+
|
290 |
+
# @spaces.GPU()
|
291 |
+
# @cuda_error_handler
|
292 |
+
# def calculate_similarity(image1, image2):
|
293 |
+
# try:
|
294 |
+
# with gpu_memory_manager():
|
295 |
+
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
296 |
+
# # Use load_img for both images
|
297 |
+
# pil_image1 = load_img(image1, output_type="pil", input_type="auto")
|
298 |
+
# pil_image2 = load_img(image2, output_type="pil", input_type="auto")
|
299 |
+
# tensor1 = preprocess_image(pil_image1).to(device)
|
300 |
+
# tensor2 = preprocess_image(pil_image2).to(device)
|
301 |
+
# model.to(device)
|
302 |
+
|
303 |
+
# with torch.no_grad():
|
304 |
+
# embedding1 = model(tensor1).mean(dim=1)
|
305 |
+
# embedding2 = model(tensor2).mean(dim=1)
|
306 |
+
|
307 |
+
# similarity = F.cosine_similarity(embedding1, embedding2).item()
|
308 |
+
|
309 |
+
# # # Move model back to CPU and clear CUDA memory
|
310 |
+
# # model.to("cpu")
|
311 |
+
# torch.cuda.empty_cache()
|
312 |
+
|
313 |
+
# return similarity
|
314 |
+
# except Exception as e:
|
315 |
+
# print(f"Error in calculate_similarity: {str(e)}")
|
316 |
+
# traceback.print_exc()
|
317 |
+
# return f"Error: {str(e)}"
|
318 |
|
319 |
with gr.Blocks() as demo:
|
320 |
gr.Markdown(title)
|