Spaces:
Running
Running
𫦠BitNet on CPU (Native 1-bit LLM)
Browse files
app.py
CHANGED
@@ -1,29 +1,29 @@
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoConfig
|
4 |
|
5 |
-
#
|
6 |
-
from bitnet.configuration_bitnet import BitNetConfig
|
7 |
-
from bitnet.modeling_bitnet import BitNetForCausalLM
|
8 |
-
from bitnet.tokenization_bitnet import BitNetTokenizer
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
_tokenizer = None
|
13 |
|
14 |
def load_model():
|
15 |
-
global
|
16 |
-
if
|
17 |
model_id = "microsoft/bitnet-b1.58-2B-4T"
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
_model = BitNetForCausalLM.from_pretrained(
|
22 |
model_id,
|
23 |
config=config,
|
24 |
torch_dtype=torch.bfloat16
|
25 |
)
|
26 |
-
return
|
|
|
|
|
27 |
|
28 |
def manage_history(history):
|
29 |
# Limit to 3 turns (each turn is user + assistant = 2 messages)
|
@@ -39,6 +39,8 @@ def manage_history(history):
|
|
39 |
|
40 |
return history
|
41 |
|
|
|
|
|
42 |
def generate_response(user_input, system_prompt, max_new_tokens, temperature, top_p, top_k, history):
|
43 |
model, tokenizer = load_model()
|
44 |
|
@@ -50,7 +52,7 @@ def generate_response(user_input, system_prompt, max_new_tokens, temperature, to
|
|
50 |
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
51 |
chat_input = tokenizer(prompt, return_tensors="pt").to(model.device)
|
52 |
|
53 |
-
# Generate
|
54 |
chat_outputs = model.generate(
|
55 |
**chat_input,
|
56 |
max_new_tokens=max_new_tokens,
|
@@ -60,19 +62,20 @@ def generate_response(user_input, system_prompt, max_new_tokens, temperature, to
|
|
60 |
do_sample=True
|
61 |
)
|
62 |
|
63 |
-
# Decode
|
64 |
response = tokenizer.decode(chat_outputs[0][chat_input['input_ids'].shape[-1]:], skip_special_tokens=True)
|
65 |
|
66 |
-
# Update
|
67 |
history.append({"role": "user", "content": user_input})
|
68 |
history.append({"role": "assistant", "content": response})
|
69 |
|
70 |
-
# Manage
|
71 |
history = manage_history(history)
|
72 |
|
73 |
return history, history
|
74 |
|
75 |
-
#
|
|
|
76 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
77 |
gr.Markdown("# BitNet b1.58 2B4T Demo")
|
78 |
|
@@ -80,7 +83,9 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
80 |
with gr.Column():
|
81 |
gr.Markdown("""
|
82 |
## About BitNet b1.58 2B4T
|
83 |
-
BitNet b1.58 2B4T is the first open-source, native 1-bit Large Language Model with 2 billion parameters,
|
|
|
|
|
84 |
- Transformer-based architecture with BitLinear layers
|
85 |
- Native 1.58-bit weights and 8-bit activations
|
86 |
- Maximum context length of 4096 tokens
|
@@ -90,7 +95,9 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
90 |
with gr.Column():
|
91 |
gr.Markdown("""
|
92 |
## About Tonic AI
|
93 |
-
Tonic AI is a vibrant community of AI enthusiasts and developers always building cool demos and pushing
|
|
|
|
|
94 |
""")
|
95 |
|
96 |
with gr.Row():
|
@@ -152,8 +159,9 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
152 |
],
|
153 |
outputs=[chatbot, chat_history]
|
154 |
)
|
|
|
|
|
155 |
|
156 |
if __name__ == "__main__":
|
157 |
-
# Preload model to avoid threading issues
|
158 |
load_model()
|
159 |
demo.launch(ssr_mode=False, share=True)
|
|
|
1 |
+
# π€β‘ ββ [ I M P O R T S ]
|
2 |
+
|
3 |
+
import accelerate
|
4 |
import gradio as gr
|
5 |
import torch
|
6 |
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoConfig
|
7 |
|
8 |
+
# π§ π§ ββ [ M O D E L ]
|
|
|
|
|
|
|
9 |
|
10 |
+
microsoft_model = None
|
11 |
+
microsoft_tokenizer = None
|
|
|
12 |
|
13 |
def load_model():
|
14 |
+
global microsoft_model, microsoft_tokenizer
|
15 |
+
if microsoft_model is None or microsoft_tokenizer is None:
|
16 |
model_id = "microsoft/bitnet-b1.58-2B-4T"
|
17 |
+
microsoft_tokenizer = AutoTokenizer.from_pretrained(model_id)
|
18 |
+
config = AutoConfig.from_pretrained(model_id)
|
19 |
+
microsoft_model = AutoModelForCausalLM.from_pretrained(
|
|
|
20 |
model_id,
|
21 |
config=config,
|
22 |
torch_dtype=torch.bfloat16
|
23 |
)
|
24 |
+
return microsoft_model, microsoft_tokenizer
|
25 |
+
|
26 |
+
# ποΈπ°οΈ ββ [ C O N V E R S A T I O N - H I S T O R Y ]
|
27 |
|
28 |
def manage_history(history):
|
29 |
# Limit to 3 turns (each turn is user + assistant = 2 messages)
|
|
|
39 |
|
40 |
return history
|
41 |
|
42 |
+
# π¬β¨ ββ [ G E N E R A T E - R E S P O N S E ]
|
43 |
+
|
44 |
def generate_response(user_input, system_prompt, max_new_tokens, temperature, top_p, top_k, history):
|
45 |
model, tokenizer = load_model()
|
46 |
|
|
|
52 |
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
53 |
chat_input = tokenizer(prompt, return_tensors="pt").to(model.device)
|
54 |
|
55 |
+
# Generate Response
|
56 |
chat_outputs = model.generate(
|
57 |
**chat_input,
|
58 |
max_new_tokens=max_new_tokens,
|
|
|
62 |
do_sample=True
|
63 |
)
|
64 |
|
65 |
+
# Decode Response
|
66 |
response = tokenizer.decode(chat_outputs[0][chat_input['input_ids'].shape[-1]:], skip_special_tokens=True)
|
67 |
|
68 |
+
# Update History
|
69 |
history.append({"role": "user", "content": user_input})
|
70 |
history.append({"role": "assistant", "content": response})
|
71 |
|
72 |
+
# Manage History Limits
|
73 |
history = manage_history(history)
|
74 |
|
75 |
return history, history
|
76 |
|
77 |
+
# ποΈπ₯οΈ ββ [ G R A D I O - I N T E R F A C E ]
|
78 |
+
|
79 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
80 |
gr.Markdown("# BitNet b1.58 2B4T Demo")
|
81 |
|
|
|
83 |
with gr.Column():
|
84 |
gr.Markdown("""
|
85 |
## About BitNet b1.58 2B4T
|
86 |
+
BitNet b1.58 2B4T is the first open-source, native 1-bit Large Language Model with 2 billion parameters,
|
87 |
+
developed by Microsoft Research. Trained on 4 trillion tokens, it matches the performance of full-precision
|
88 |
+
models while offering significant efficiency gains in memory, energy, and latency. Features include:
|
89 |
- Transformer-based architecture with BitLinear layers
|
90 |
- Native 1.58-bit weights and 8-bit activations
|
91 |
- Maximum context length of 4096 tokens
|
|
|
95 |
with gr.Column():
|
96 |
gr.Markdown("""
|
97 |
## About Tonic AI
|
98 |
+
Tonic AI is a vibrant community of AI enthusiasts and developers always building cool demos and pushing
|
99 |
+
the boundaries of what's possible with AI. We're passionate about creating innovative, accessible, and
|
100 |
+
engaging AI experiences for everyone. Join us in exploring the future of AI!
|
101 |
""")
|
102 |
|
103 |
with gr.Row():
|
|
|
159 |
],
|
160 |
outputs=[chatbot, chat_history]
|
161 |
)
|
162 |
+
|
163 |
+
# ποΏ½οΏ½οΏ½οΏ½ ββ [ M A I N ]
|
164 |
|
165 |
if __name__ == "__main__":
|
|
|
166 |
load_model()
|
167 |
demo.launch(ssr_mode=False, share=True)
|