Command-A / app.py
Tonic's picture
reduce position embeddings
d559f10 unverified
raw
history blame
5.2 kB
import spaces
import gradio as gr
import transformers
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
import torch
import os
HF_TOKEN = os.environ.get("HF_TOKEN")
title = """
# Welcome to 🌟Tonic's🫡Command-A
🫡Command-A is a Large Language Model optimized for conversational interaction and long context tasks. It targets the “scalable” category of models that balance high performance with strong accuracy, enabling companies to move beyond proof of concept, and into production. 🫡Command-A boasts high precision on retrieval augmented generation (RAG) and tool use tasks, low latency and high throughput, a long 128k context, and strong capabilities across 10 key languages. You can build with this endpoint using🫡Command-R available here : [CohereForAI/c4ai-command-r-v01](https://huggingface.co/CohereForAI/c4ai-command-r-v01). You can also use 🫡Command-A by cloning this space. Simply click here: <a style="display:inline-block" href="https://huggingface.co/spaces/Tonic/Command-A?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></h3>
Join us : 🌟TeamTonic🌟 is always making cool demos! Join our active builder's 🛠️community 👻 [![Join us on Discord](https://img.shields.io/discord/1109943800132010065?label=Discord&logo=discord&style=flat-square)](https://discord.gg/GWpVpekp) On 🤗Huggingface:[MultiTransformer](https://huggingface.co/MultiTransformer) On 🌐Github: [Tonic-AI](https://github.com/tonic-ai) & contribute to🌟 [DataTonic](https://huggingface.co/DataTonic)🤗Big thanks to Yuvi Sharma and all the folks at huggingface for the community grant 🤗
"""
model_id = "Tonic/c4ai-command-a-03-2025-4bit_fp4"
# Define quantization config for 4-bit
quantization_config = BitsAndBytesConfig(
load_in_4bit=True, # Enable 4-bit quantization
bnb_4bit_quant_type="fp4", # Use FP4 quantization
bnb_4bit_use_double_quant=True#, # Optional: double quantization for better precision
# llm_int8_enable_fp32_cpu_offload=True # Allow CPU offloading for 32-bit modules
)
# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained(model_id, token=HF_TOKEN)
model = AutoModelForCausalLM.from_pretrained(
model_id,
quantization_config=quantization_config, # Apply quantization
# device_map="auto", # Automatically map to available devices
torch_dtype=torch.bfloat16,
token=HF_TOKEN,
max_position_embeddings=8192 # Reduce context window to 8k tokens (from 128k)
)
@spaces.GPU
def generate_response(user_input, max_new_tokens, temperature):
messages = [{"role": "user", "content": user_input}]
input_ids = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt")
input_ids = input_ids.to(model.device)
gen_tokens = model.generate(
input_ids = input_ids,
max_new_tokens=max_new_tokens,
do_sample=True,
temperature=temperature,
)
gen_text = tokenizer.decode(gen_tokens[0], skip_special_tokens=True)
if gen_text.startswith(user_input):
gen_text = gen_text[len(user_input):].lstrip()
return gen_text
examples = [
{"message": "What is the weather like today?", "max_new_tokens": 250, "temperature": 0.5},
{"message": "Tell me a joke.", "max_new_tokens": 650, "temperature": 0.7},
{"message": "Explain the concept of machine learning.", "max_new_tokens": 980, "temperature": 0.4}
]
example_choices = [f"Example {i+1}" for i in range(len(examples))]
def load_example(choice):
index = example_choices.index(choice)
example = examples[index]
return example["message"], example["max_new_tokens"], example["temperature"]
with gr.Blocks() as demo:
gr.Markdown(title)
with gr.Row():
max_new_tokens_slider = gr.Slider(minimum=100, maximum=4000, value=980, label="Max New Tokens")
temperature_slider = gr.Slider(minimum=0.1, maximum=1.0, step=0.1, value=0.3, label="Temperature")
message_box = gr.Textbox(lines=2, label="Your Message")
generate_button = gr.Button("Try🫡Command-A")
output_box = gr.Textbox(label="🫡Command-A")
generate_button.click(
fn=generate_response,
inputs=[message_box, max_new_tokens_slider, temperature_slider],
outputs=output_box
)
example_dropdown = gr.Dropdown(label="🫡Load Example", choices=example_choices)
example_button = gr.Button("🫡Load")
example_button.click(
fn=load_example,
inputs=example_dropdown,
outputs=[message_box, max_new_tokens_slider, temperature_slider]
)
demo.launch(ssr_mode=False)