Spaces:
Runtime error
Runtime error
app
Browse files
app.py
CHANGED
@@ -17,26 +17,10 @@ import torch
|
|
17 |
import random
|
18 |
|
19 |
### Streamlit utitlity functions
|
20 |
-
def
|
21 |
-
with open(
|
22 |
-
|
23 |
-
|
24 |
-
<div style="
|
25 |
-
display: flex;
|
26 |
-
justify-content: center;
|
27 |
-
align-items: center;
|
28 |
-
background-color: white;
|
29 |
-
">
|
30 |
-
<iframe src="data:application/pdf;base64,{base64_pdf}"
|
31 |
-
width="800"
|
32 |
-
height="425"
|
33 |
-
type="application/pdf"
|
34 |
-
style="background-color: white;"
|
35 |
-
></iframe>
|
36 |
-
</div>
|
37 |
-
"""
|
38 |
-
st.markdown(pdf_display, unsafe_allow_html=True)
|
39 |
-
|
40 |
|
41 |
def update_multiselect_style():
|
42 |
st.markdown(
|
@@ -88,7 +72,7 @@ def main():
|
|
88 |
""")
|
89 |
|
90 |
# Load the picture of the architecture from the assets folder and disply it (is a pdf file)
|
91 |
-
|
92 |
|
93 |
st.markdown("### Setup")
|
94 |
st.markdown("\n Please fill the following fields with the path to the NSRwH and NSR models. Instruction on how to get or \
|
@@ -250,12 +234,13 @@ def main():
|
|
250 |
#conditioning = {"symbolic_conditioning": torch.tensor([1,2],device="cuda").long(), "numerical_conditioning": torch.tensor([],device="cuda").float()}
|
251 |
|
252 |
st.markdown("#### NSR")
|
253 |
-
do_inference_with_also_nsr = st.checkbox("Tick this if you want to also run the NSR model",
|
254 |
if do_inference_with_also_nsr:
|
255 |
nsr = st.text_input("Path to the NSR model", "ControllableNeuralSymbolicRegressionWeights/nsr_200000000_epoch=149.ckpt")
|
256 |
|
257 |
fit = st.button("Run the model")
|
258 |
if fit:
|
|
|
259 |
if is_cuda:
|
260 |
fitfunc = return_fitfunc(cfg, metadata, nsrwh, device="cuda")
|
261 |
else:
|
@@ -282,6 +267,7 @@ def main():
|
|
282 |
|
283 |
|
284 |
if do_inference_with_also_nsr:
|
|
|
285 |
cfg_nsr = omegaconf.OmegaConf.load(Path("configs/nsr_network_config.yaml"))
|
286 |
cfg_nsr.inference.bfgs.activated = True
|
287 |
cfg_nsr.inference.bfgs.n_restarts=10
|
|
|
17 |
import random
|
18 |
|
19 |
### Streamlit utitlity functions
|
20 |
+
def show_png(file):
|
21 |
+
with open(file, "rb") as f:
|
22 |
+
img = f.read()
|
23 |
+
st.image(img, width=700)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
def update_multiselect_style():
|
26 |
st.markdown(
|
|
|
72 |
""")
|
73 |
|
74 |
# Load the picture of the architecture from the assets folder and disply it (is a pdf file)
|
75 |
+
show_png('assets/main_figure_arxiv.png')
|
76 |
|
77 |
st.markdown("### Setup")
|
78 |
st.markdown("\n Please fill the following fields with the path to the NSRwH and NSR models. Instruction on how to get or \
|
|
|
234 |
#conditioning = {"symbolic_conditioning": torch.tensor([1,2],device="cuda").long(), "numerical_conditioning": torch.tensor([],device="cuda").float()}
|
235 |
|
236 |
st.markdown("#### NSR")
|
237 |
+
do_inference_with_also_nsr = st.checkbox("Tick this if you want to also run the NSR model", False)
|
238 |
if do_inference_with_also_nsr:
|
239 |
nsr = st.text_input("Path to the NSR model", "ControllableNeuralSymbolicRegressionWeights/nsr_200000000_epoch=149.ckpt")
|
240 |
|
241 |
fit = st.button("Run the model")
|
242 |
if fit:
|
243 |
+
st.write("Results are being computed, please wait...")
|
244 |
if is_cuda:
|
245 |
fitfunc = return_fitfunc(cfg, metadata, nsrwh, device="cuda")
|
246 |
else:
|
|
|
267 |
|
268 |
|
269 |
if do_inference_with_also_nsr:
|
270 |
+
st.write("Results for nsr are being computed, please wait...")
|
271 |
cfg_nsr = omegaconf.OmegaConf.load(Path("configs/nsr_network_config.yaml"))
|
272 |
cfg_nsr.inference.bfgs.activated = True
|
273 |
cfg_nsr.inference.bfgs.n_restarts=10
|