File size: 4,524 Bytes
28c256d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

import argparse
import subprocess
from collections import OrderedDict

import torch
from mmengine.runner import CheckpointLoader

convert_dict_fpn = {
    'module.backbone.fpn.fpn_inner2': 'neck.lateral_convs.0.conv',
    'module.backbone.fpn.fpn_inner3': 'neck.lateral_convs.1.conv',
    'module.backbone.fpn.fpn_inner4': 'neck.lateral_convs.2.conv',
    'module.backbone.fpn.fpn_layer2': 'neck.fpn_convs.0.conv',
    'module.backbone.fpn.fpn_layer3': 'neck.fpn_convs.1.conv',
    'module.backbone.fpn.fpn_layer4': 'neck.fpn_convs.2.conv',
    'module.backbone.fpn.top_blocks.p6': 'neck.fpn_convs.3.conv',
    'module.backbone.fpn.top_blocks.p7': 'neck.fpn_convs.4.conv',
}


def correct_unfold_reduction_order(x):
    out_channel, in_channel = x.shape
    x = x.reshape(out_channel, 4, in_channel // 4)
    x = x[:, [0, 2, 1, 3], :].transpose(1, 2).reshape(out_channel, in_channel)
    return x


def correct_unfold_norm_order(x):
    in_channel = x.shape[0]
    x = x.reshape(4, in_channel // 4)
    x = x[[0, 2, 1, 3], :].transpose(0, 1).reshape(in_channel)
    return x


def convert(ckpt):
    new_ckpt = OrderedDict()

    for k, v in list(ckpt.items()):
        if 'anchor_generator' in k or 'resizer' in k or 'cls_logits' in k:
            continue

        new_v = v
        if 'module.backbone.body' in k:
            new_k = k.replace('module.backbone.body', 'backbone')
            if 'patch_embed.proj' in new_k:
                new_k = new_k.replace('patch_embed.proj',
                                      'patch_embed.projection')
            elif 'pos_drop' in new_k:
                new_k = new_k.replace('pos_drop', 'drop_after_pos')

            if 'layers' in new_k:
                new_k = new_k.replace('layers', 'stages')
                if 'mlp.fc1' in new_k:
                    new_k = new_k.replace('mlp.fc1', 'ffn.layers.0.0')
                elif 'mlp.fc2' in new_k:
                    new_k = new_k.replace('mlp.fc2', 'ffn.layers.1')
                elif 'attn' in new_k:
                    new_k = new_k.replace('attn', 'attn.w_msa')

                if 'downsample' in k:
                    if 'reduction.' in k:
                        new_v = correct_unfold_reduction_order(v)
                    elif 'norm.' in k:
                        new_v = correct_unfold_norm_order(v)

        elif 'module.backbone.fpn' in k:
            old_k = k.replace('.weight', '')
            old_k = old_k.replace('.bias', '')
            new_k = k.replace(old_k, convert_dict_fpn[old_k])
        elif 'module.language_backbone' in k:
            new_k = k.replace('module.language_backbone',
                              'language_model.language_backbone')
            if 'pooler' in k:
                continue
        elif 'module.rpn' in k:
            if 'module.rpn.head.scales' in k:
                new_k = k.replace('module.rpn.head.scales',
                                  'bbox_head.head.scales')
            else:
                new_k = k.replace('module.rpn', 'bbox_head')

            if 'anchor_generator' in k and 'resizer' in k:
                continue
        else:
            print('skip:', k)
            continue

        if 'DyConv' in new_k:
            new_k = new_k.replace('DyConv', 'dyconvs')

        if 'AttnConv' in new_k:
            new_k = new_k.replace('AttnConv', 'attnconv')

        new_ckpt[new_k] = new_v
    return new_ckpt


def main():
    parser = argparse.ArgumentParser(
        description='Convert keys to mmdet style.')
    parser.add_argument(
        'src', default='glip_a_tiny_o365.pth', help='src model path or url')
    # The dst path must be a full path of the new checkpoint.
    parser.add_argument(
        '--dst', default='glip_tiny_a_mmdet.pth', help='save path')
    args = parser.parse_args()

    checkpoint = CheckpointLoader.load_checkpoint(args.src, map_location='cpu')

    if 'model' in checkpoint:
        state_dict = checkpoint['model']
    else:
        state_dict = checkpoint

    weight = convert(state_dict)
    torch.save(weight, args.dst)

    sha = subprocess.check_output(['sha256sum', args.dst]).decode()
    final_file = args.dst.replace('.pth', '') + '-{}.pth'.format(sha[:8])
    subprocess.Popen(['mv', args.dst, final_file])
    print(f'Done!!, save to {final_file}')


if __name__ == '__main__':
    main()