import os import json import torch import torchvision.transforms as transforms import os.path import numpy as np import cv2 from PIL import Image from torch.utils.data import Dataset import random from .__base_dataset__ import BaseDataset class Matterport3DDataset(BaseDataset): def __init__(self, cfg, phase, **kwargs): super(Matterport3DDataset, self).__init__( cfg=cfg, phase=phase, **kwargs) self.metric_scale = cfg.metric_scale #self.cap_range = self.depth_range # in meter def load_norm_label(self, norm_path, H, W): normal_x = cv2.imread(norm_path['x'], cv2.IMREAD_ANYCOLOR | cv2.IMREAD_ANYDEPTH) normal_y = cv2.imread(norm_path['y'], cv2.IMREAD_ANYCOLOR | cv2.IMREAD_ANYDEPTH) normal_z = cv2.imread(norm_path['z'], cv2.IMREAD_ANYCOLOR | cv2.IMREAD_ANYDEPTH) raw_normal = np.array([normal_x, normal_y, normal_z]) invalid_mask = np.all(raw_normal == 0, axis=0) ego_normal = raw_normal.astype(np.float64) / 32768.0 - 1 ego2cam = np.array([[1,0,0], [0,-1,0], [0,0,-1]]) normal = (ego2cam @ ego_normal.reshape(3,-1)).reshape(ego_normal.shape) normal[:,invalid_mask] = 0 normal = normal.transpose((1,2,0)) if normal.shape[0] != H or normal.shape[1] != W: normal = cv2.resize(normal, [W,H], interpolation=cv2.INTER_NEAREST) return normal def process_depth(self, depth: np.array, rgb: np.array) -> np.array: depth[depth>65500] = 0 depth = depth / self.metric_scale return depth