import os import json import torch import torchvision.transforms as transforms import os.path import numpy as np import cv2 from torch.utils.data import Dataset import random from .__base_dataset__ import BaseDataset import matplotlib.pyplot as plt class MapillaryPSDDataset(BaseDataset): def __init__(self, cfg, phase, **kwargs): super(MapillaryPSDDataset, self).__init__( cfg=cfg, phase=phase, **kwargs) self.metric_scale = cfg.metric_scale def process_depth(self, depth, rgb): depth[depth>65500] = 0 depth /= self.metric_scale h, w, _ = rgb.shape # to rgb size depth_resize = cv2.resize(depth, (w, h), interpolation=cv2.INTER_NEAREST) return depth_resize if __name__ == '__main__': from mmcv.utils import Config cfg = Config.fromfile('mono/configs/Apolloscape_DDAD/convnext_base.cascade.1m.sgd.mae.py') dataset_i = MapillaryDataset(cfg['Apolloscape'], 'train', **cfg.data_basic) print(dataset_i)