Spaces:
Running
Running
File size: 6,774 Bytes
b7eedf7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 |
import numpy as np
import torch
import lietorch
import droid_backends
from torch.multiprocessing import Process, Queue, Lock, Value
from collections import OrderedDict
from droid_net import cvx_upsample
import geom.projective_ops as pops
class DepthVideo:
def __init__(self, image_size=[480, 640], buffer=1024, stereo=False, device="cuda:0"):
# current keyframe count
self.counter = Value('i', 0)
self.ready = Value('i', 0)
self.ht = ht = image_size[0]
self.wd = wd = image_size[1]
### state attributes ###
self.tstamp = torch.zeros(buffer, device="cuda", dtype=torch.float).share_memory_()
self.images = torch.zeros(buffer, 3, ht, wd, device="cuda", dtype=torch.uint8)
self.dirty = torch.zeros(buffer, device="cuda", dtype=torch.bool).share_memory_()
self.red = torch.zeros(buffer, device="cuda", dtype=torch.bool).share_memory_()
self.poses = torch.zeros(buffer, 7, device="cuda", dtype=torch.float).share_memory_()
self.disps = torch.ones(buffer, ht//8, wd//8, device="cuda", dtype=torch.float).share_memory_()
self.disps_sens = torch.zeros(buffer, ht//8, wd//8, device="cuda", dtype=torch.float).share_memory_()
self.disps_up = torch.zeros(buffer, ht, wd, device="cuda", dtype=torch.float).share_memory_()
self.intrinsics = torch.zeros(buffer, 4, device="cuda", dtype=torch.float).share_memory_()
self.masks = torch.zeros(buffer, ht//8, wd//8, device="cuda", dtype=torch.float).share_memory_()
self.stereo = stereo
c = 1 if not self.stereo else 2
### feature attributes ###
self.fmaps = torch.zeros(buffer, c, 128, ht//8, wd//8, dtype=torch.half, device="cuda").share_memory_()
self.nets = torch.zeros(buffer, 128, ht//8, wd//8, dtype=torch.half, device="cuda").share_memory_()
self.inps = torch.zeros(buffer, 128, ht//8, wd//8, dtype=torch.half, device="cuda").share_memory_()
# initialize poses to identity transformation
self.poses[:] = torch.as_tensor([0, 0, 0, 0, 0, 0, 1], dtype=torch.float, device="cuda")
def get_lock(self):
return self.counter.get_lock()
def __item_setter(self, index, item):
if isinstance(index, int) and index >= self.counter.value:
self.counter.value = index + 1
elif isinstance(index, torch.Tensor) and index.max().item() > self.counter.value:
self.counter.value = index.max().item() + 1
# self.dirty[index] = True
self.tstamp[index] = item[0]
self.images[index] = item[1]
if item[2] is not None:
self.poses[index] = item[2]
if item[3] is not None:
self.disps[index] = item[3]
if item[4] is not None:
depth = item[4][3::8,3::8]
self.disps_sens[index] = torch.where(depth>0, 1.0/depth, depth)
if item[5] is not None:
self.intrinsics[index] = item[5]
if len(item) > 6:
self.fmaps[index] = item[6]
if len(item) > 7:
self.nets[index] = item[7]
if len(item) > 8:
self.inps[index] = item[8]
if len(item) > 9:
self.masks[index] = item[9]
def __setitem__(self, index, item):
with self.get_lock():
self.__item_setter(index, item)
def __getitem__(self, index):
""" index the depth video """
with self.get_lock():
# support negative indexing
if isinstance(index, int) and index < 0:
index = self.counter.value + index
item = (
self.poses[index],
self.disps[index],
self.intrinsics[index],
self.fmaps[index],
self.nets[index],
self.inps[index])
return item
def append(self, *item):
with self.get_lock():
self.__item_setter(self.counter.value, item)
### geometric operations ###
@staticmethod
def format_indicies(ii, jj):
""" to device, long, {-1} """
if not isinstance(ii, torch.Tensor):
ii = torch.as_tensor(ii)
if not isinstance(jj, torch.Tensor):
jj = torch.as_tensor(jj)
ii = ii.to(device="cuda", dtype=torch.long).reshape(-1)
jj = jj.to(device="cuda", dtype=torch.long).reshape(-1)
return ii, jj
def upsample(self, ix, mask):
""" upsample disparity """
disps_up = cvx_upsample(self.disps[ix].unsqueeze(-1), mask)
self.disps_up[ix] = disps_up.squeeze()
def normalize(self):
""" normalize depth and poses """
with self.get_lock():
s = self.disps[:self.counter.value].mean()
self.disps[:self.counter.value] /= s
self.poses[:self.counter.value,:3] *= s
self.dirty[:self.counter.value] = True
def reproject(self, ii, jj):
""" project points from ii -> jj """
ii, jj = DepthVideo.format_indicies(ii, jj)
Gs = lietorch.SE3(self.poses[None])
coords, valid_mask = \
pops.projective_transform(Gs, self.disps[None], self.intrinsics[None], ii, jj)
return coords, valid_mask
def distance(self, ii=None, jj=None, beta=0.3, bidirectional=True):
""" frame distance metric """
return_matrix = False
if ii is None:
return_matrix = True
N = self.counter.value
ii, jj = torch.meshgrid(torch.arange(N), torch.arange(N), indexing='ij')
ii, jj = DepthVideo.format_indicies(ii, jj)
if bidirectional:
poses = self.poses[:self.counter.value].clone()
d1 = droid_backends.frame_distance(
poses, self.disps, self.intrinsics[0], ii, jj, beta)
d2 = droid_backends.frame_distance(
poses, self.disps, self.intrinsics[0], jj, ii, beta)
d = .5 * (d1 + d2)
else:
d = droid_backends.frame_distance(
self.poses, self.disps, self.intrinsics[0], ii, jj, beta)
if return_matrix:
return d.reshape(N, N)
return d
def ba(self, target, weight, eta, ii, jj, t0=1, t1=None, itrs=2, lm=1e-4, ep=0.1, motion_only=False):
""" dense bundle adjustment (DBA) """
with self.get_lock():
# [t0, t1] window of bundle adjustment optimization
if t1 is None:
t1 = max(ii.max().item(), jj.max().item()) + 1
droid_backends.ba(self.poses, self.disps, self.intrinsics[0], self.disps_sens,
target, weight, eta, ii, jj, t0, t1, itrs, lm, ep, motion_only)
self.disps.clamp_(min=0.001)
|