Spaces:
Running
Running
File size: 4,985 Bytes
b7eedf7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 |
# DROID-SLAM
<!-- <center><img src="misc/DROID.png" width="640" style="center"></center> -->
[](https://www.youtube.com/watch?v=GG78CSlSHSA)
[DROID-SLAM: Deep Visual SLAM for Monocular, Stereo, and RGB-D Cameras](https://arxiv.org/abs/2108.10869)
Zachary Teed and Jia Deng
```
@article{teed2021droid,
title={{DROID-SLAM: Deep Visual SLAM for Monocular, Stereo, and RGB-D Cameras}},
author={Teed, Zachary and Deng, Jia},
journal={Advances in neural information processing systems},
year={2021}
}
```
**Initial Code Release:** This repo currently provides a single GPU implementation of our monocular, stereo, and RGB-D SLAM systems. It currently contains demos, training, and evaluation scripts.
## Requirements
To run the code you will need ...
* **Inference:** Running the demos will require a GPU with at least 11G of memory.
* **Training:** Training requires a GPU with at least 24G of memory. We train on 4 x RTX-3090 GPUs.
## Getting Started
1. Clone the repo using the `--recursive` flag
```Bash
git clone --recursive https://github.com/princeton-vl/DROID-SLAM.git
```
2. Creating a new anaconda environment using the provided .yaml file. Use `environment_novis.yaml` to if you do not want to use the visualization
```Bash
conda env create -f environment.yaml
pip install evo --upgrade --no-binary evo
pip install gdown
```
3. Compile the extensions (takes about 10 minutes)
```Bash
python setup.py install
```
## Demos
1. Download the model from google drive: [droid.pth](https://drive.google.com/file/d/1PpqVt1H4maBa_GbPJp4NwxRsd9jk-elh/view?usp=sharing)
2. Download some sample videos using the provided script.
```Bash
./tools/download_sample_data.sh
```
Run the demo on any of the samples (all demos can be run on a GPU with 11G of memory). While running, press the "s" key to increase the filtering threshold (= more points) and "a" to decrease the filtering threshold (= fewer points). To save the reconstruction with full resolution depth maps use the `--reconstruction_path` flag.
```Python
python demo.py --imagedir=data/abandonedfactory --calib=calib/tartan.txt --stride=2
```
```Python
python demo.py --imagedir=data/sfm_bench/rgb --calib=calib/eth.txt
```
```Python
python demo.py --imagedir=data/Barn --calib=calib/barn.txt --stride=1 --backend_nms=4
```
```Python
python demo.py --imagedir=data/mav0/cam0/data --calib=calib/euroc.txt --t0=150
```
```Python
python demo.py --imagedir=data/rgbd_dataset_freiburg3_cabinet/rgb --calib=calib/tum3.txt
```
**Running on your own data:** All you need is a calibration file. Calibration files are in the form
```
fx fy cx cy [k1 k2 p1 p2 [ k3 [ k4 k5 k6 ]]]
```
with parameters in brackets optional.
## Evaluation
We provide evaluation scripts for TartanAir, EuRoC, and TUM. EuRoC and TUM can be run on a 1080Ti. The TartanAir and ETH will require 24G of memory.
### TartanAir (Mono + Stereo)
Download the [TartanAir](https://theairlab.org/tartanair-dataset/) dataset using the script `thirdparty/tartanair_tools/download_training.py` and put them in `datasets/TartanAir`
```Bash
./tools/validate_tartanair.sh --plot_curve # monocular eval
./tools/validate_tartanair.sh --plot_curve --stereo # stereo eval
```
### EuRoC (Mono + Stereo)
Download the [EuRoC](https://projects.asl.ethz.ch/datasets/doku.php?id=kmavvisualinertialdatasets) sequences (ASL format) and put them in `datasets/EuRoC`
```Bash
./tools/evaluate_euroc.sh # monocular eval
./tools/evaluate_euroc.sh --stereo # stereo eval
```
### TUM-RGBD (Mono)
Download the fr1 sequences from [TUM-RGBD](https://vision.in.tum.de/data/datasets/rgbd-dataset/download) and put them in `datasets/TUM-RGBD`
```Bash
./tools/evaluate_tum.sh # monocular eval
```
### ETH3D (RGB-D)
Download the [ETH3D](https://www.eth3d.net/slam_datasets) dataset
```Bash
./tools/evaluate_eth3d.sh # RGB-D eval
```
## Training
First download the TartanAir dataset. The download script can be found in `thirdparty/tartanair_tools/download_training.py`. You will only need the `rgb` and `depth` data.
```
python download_training.py --rgb --depth
```
You can then run the training script. We use 4x3090 RTX GPUs for training which takes approximatly 1 week. If you use a different number of GPUs, adjust the learning rate accordingly.
**Note:** On the first training run, covisibility is computed between all pairs of frames. This can take several hours, but the results are cached so that future training runs will start immediately.
```
python train.py --datapath=<path to tartanair> --gpus=4 --lr=0.00025
```
## Acknowledgements
Data from [TartanAir](https://theairlab.org/tartanair-dataset/) was used to train our model. We additionally use evaluation tools from [evo](https://github.com/MichaelGrupp/evo) and [tartanair_tools](https://github.com/castacks/tartanair_tools).
|