import gradio as gr from huggingface_hub import InferenceClient from deep_translator import GoogleTranslator """ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference """ client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") translator_vi2en = GoogleTranslator(source='vi', target='en') translator_en2vi = GoogleTranslator(source='en', target='vi') def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): message_en = translator_vi2en.translate(message) messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message_en}) respnse = client.text_generation( messages, temperature=temperature, top_p=top_p, ) response_vi = translator_en2vi.translate(response) return response_vi """ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface """ demo = gr.ChatInterface( respond ) if __name__ == "__main__": demo.launch()