Spaces:
Build error
Build error
Delete CLIP.py
Browse files
CLIP.py
DELETED
@@ -1,141 +0,0 @@
|
|
1 |
-
#!/usr/bin/env python
|
2 |
-
# coding: utf-8
|
3 |
-
|
4 |
-
# In[1]:
|
5 |
-
|
6 |
-
|
7 |
-
get_ipython().system('pip install ftfy regex tqdm')
|
8 |
-
get_ipython().system('pip install git+https://github.com/openai/CLIP.git')
|
9 |
-
get_ipython().system('pip install sentencepiece-0.1.98-cp311-cp311-win_amd64.whl')
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
# In[5]:
|
14 |
-
|
15 |
-
|
16 |
-
# prompt: install transformers
|
17 |
-
|
18 |
-
get_ipython().system('pip install transformers')
|
19 |
-
|
20 |
-
|
21 |
-
# In[6]:
|
22 |
-
|
23 |
-
|
24 |
-
from transformers import VisionEncoderDecoderModel, ViTFeatureExtractor, AutoTokenizer
|
25 |
-
|
26 |
-
|
27 |
-
feature_extractor = ViTFeatureExtractor.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
28 |
-
tokenizer = AutoTokenizer.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
29 |
-
model = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
30 |
-
|
31 |
-
|
32 |
-
# ## Import the necessary libraries and load the CLIP model:
|
33 |
-
|
34 |
-
# In[7]:
|
35 |
-
|
36 |
-
|
37 |
-
from PIL import Image
|
38 |
-
import clip
|
39 |
-
import torch
|
40 |
-
|
41 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
42 |
-
clip_model, preprocess = clip.load("ViT-B/32", device=device)
|
43 |
-
|
44 |
-
|
45 |
-
# ## Define a function to generate product descriptions:
|
46 |
-
|
47 |
-
# In[8]:
|
48 |
-
|
49 |
-
|
50 |
-
image = Image.open("data/download.jpeg")
|
51 |
-
pixel_values = feature_extractor(images=image, return_tensors="pt").pixel_values
|
52 |
-
output_ids = model.generate(pixel_values, max_length=50, num_beams=4, early_stopping=True)
|
53 |
-
captions = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
|
54 |
-
|
55 |
-
|
56 |
-
# In[9]:
|
57 |
-
|
58 |
-
|
59 |
-
image = preprocess(image).unsqueeze(0).to(device)
|
60 |
-
with torch.no_grad():
|
61 |
-
image_features = clip_model.encode_image(image)
|
62 |
-
|
63 |
-
text_inputs = torch.cat([clip.tokenize(caption).to(device) for caption in captions]).to(device)
|
64 |
-
with torch.no_grad():
|
65 |
-
text_features = clip_model.encode_text(text_inputs)
|
66 |
-
|
67 |
-
similarity_scores = image_features @ text_features.T
|
68 |
-
best_caption_idx = similarity_scores.argmax().item()
|
69 |
-
product_description = captions[best_caption_idx]
|
70 |
-
print(product_description)
|
71 |
-
|
72 |
-
|
73 |
-
# # Using SigLip
|
74 |
-
|
75 |
-
# In[11]:
|
76 |
-
|
77 |
-
|
78 |
-
get_ipython().system('pip install sentencepiece')
|
79 |
-
get_ipython().system('pip install protobuf')
|
80 |
-
|
81 |
-
|
82 |
-
# In[12]:
|
83 |
-
|
84 |
-
|
85 |
-
from transformers import AutoProcessor, AutoModel, VisionEncoderDecoderModel, ViTFeatureExtractor, AutoTokenizer
|
86 |
-
import torch
|
87 |
-
from PIL import Image
|
88 |
-
|
89 |
-
|
90 |
-
model = AutoModel.from_pretrained("google/siglip-base-patch16-224")
|
91 |
-
processor = AutoProcessor.from_pretrained("google/siglip-base-patch16-224")
|
92 |
-
|
93 |
-
|
94 |
-
image = Image.open("data/avito4.jpeg")
|
95 |
-
inputs = processor(images=image, return_tensors="pt")
|
96 |
-
|
97 |
-
|
98 |
-
feature_extractor = ViTFeatureExtractor.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
99 |
-
tokenizer = AutoTokenizer.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
100 |
-
model = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
101 |
-
|
102 |
-
pixel_values = feature_extractor(images=image, return_tensors="pt").pixel_values
|
103 |
-
output_ids = model.generate(pixel_values, max_length=100, num_beams=5, early_stopping=True)
|
104 |
-
captions = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
|
105 |
-
|
106 |
-
image = preprocess(image).unsqueeze(0).to(device)
|
107 |
-
with torch.no_grad():
|
108 |
-
image_features = clip_model.encode_image(image)
|
109 |
-
|
110 |
-
text_inputs = torch.cat([clip.tokenize(caption).to(device) for caption in captions]).to(device)
|
111 |
-
with torch.no_grad():
|
112 |
-
text_features = clip_model.encode_text(text_inputs)
|
113 |
-
|
114 |
-
similarity_scores = image_features @ text_features.T
|
115 |
-
best_caption_idx = similarity_scores.argmax().item()
|
116 |
-
product_description = captions[best_caption_idx]
|
117 |
-
print(product_description)
|
118 |
-
|
119 |
-
# a vase sitting on a shelf in a store => thuya
|
120 |
-
# a wooden bench sitting on top of a wooden floor => avito
|
121 |
-
## two old fashioned vases sitting next to each other => avito2
|
122 |
-
## three wooden vases sitting on top of a wooden floor => avito3
|
123 |
-
# an old fashioned clock sitting on top of a table => avito4
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
# In[ ]:
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
# # Implemeting LLaVa
|
134 |
-
|
135 |
-
# https://colab.research.google.com/drive/1veefV17NcD1S4ou4nF8ABkfm8-TgU0Dr#scrollTo=XN2vJCPZk1UY
|
136 |
-
|
137 |
-
# In[ ]:
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|