import streamlit as st from transformers import pipeline # Load the Hugging Face pipelines classifier = pipeline("text-classification", model="bhadresh-savani/bert-base-go-emotion") summarizer = pipeline("summarization", model="facebook/bart-large-cnn") # Streamlit app UI st.title("Emotion Detection and Comment Summarization") st.markdown( """ This app detects the emotion in a given comment and provides a concise summary. """ ) # Input text box for comments comment_input = st.text_area( "Enter your comment:", placeholder="Type your comment here...", height=200 ) # Analyze button if st.button("Analyze Comment"): if not comment_input.strip(): st.error("Please provide a valid comment.") else: # Perform emotion classification emotion_result = classifier(comment_input)[0] emotion_label = emotion_result["label"] emotion_score = round(emotion_result["score"], 4) # Perform summarization summary_result = summarizer(comment_input, max_length=30, min_length=10, do_sample=False)[0]["summary_text"] # Display results st.subheader("Analysis Result") st.write(f"### **Emotion:** {emotion_label} (Confidence: {emotion_score})") st.write(f"### **Comment Summary:** {summary_result}")