Thea231 commited on
Commit
ac58aab
·
verified ·
1 Parent(s): c538cb5

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +39 -0
app.py ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from transformers import pipeline
3
+
4
+ # Load the Hugging Face pipelines
5
+ classifier = pipeline("text-classification", model="bhadresh-savani/bert-base-go-emotion")
6
+ summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
7
+
8
+ # Streamlit app UI
9
+ st.title("Emotion Detection and Comment Summarization")
10
+ st.markdown(
11
+ """
12
+ This app detects the emotion in a given comment and provides a concise summary.
13
+ """
14
+ )
15
+
16
+ # Input text box for comments
17
+ comment_input = st.text_area(
18
+ "Enter your comment:",
19
+ placeholder="Type your comment here...",
20
+ height=200
21
+ )
22
+
23
+ # Analyze button
24
+ if st.button("Analyze Comment"):
25
+ if not comment_input.strip():
26
+ st.error("Please provide a valid comment.")
27
+ else:
28
+ # Perform emotion classification
29
+ emotion_result = classifier(comment_input)[0]
30
+ emotion_label = emotion_result["label"]
31
+ emotion_score = round(emotion_result["score"], 4)
32
+
33
+ # Perform summarization
34
+ summary_result = summarizer(comment_input, max_length=50, min_length=10, do_sample=False)[0]["summary_text"]
35
+
36
+ # Display results
37
+ st.subheader("Analysis Result")
38
+ st.write(f"### **Emotion:** {emotion_label} (Confidence: {emotion_score})")
39
+ st.write(f"### **Summary:** {summary_result}")