Spaces:
Sleeping
Sleeping
import streamlit as st | |
from transformers import pipeline | |
# Load the Hugging Face pipelines | |
classifier = pipeline("text-classification", model="bhadresh-savani/bert-base-go-emotion") | |
summarizer = pipeline("summarization", model="facebook/bart-large-cnn") | |
# Streamlit app UI | |
st.title("Emotion Detection and Comment Summarization") | |
st.markdown( | |
""" | |
This app detects the emotion in a given comment and provides a concise summary. | |
""" | |
) | |
# Input text box for comments | |
comment_input = st.text_area( | |
"Enter your comment:", | |
placeholder="Type your comment here...", | |
height=200 | |
) | |
# Analyze button | |
if st.button("Analyze Comment"): | |
if not comment_input.strip(): | |
st.error("Please provide a valid comment.") | |
else: | |
# Perform emotion classification | |
emotion_result = classifier(comment_input)[0] | |
emotion_label = emotion_result["label"] | |
emotion_score = round(emotion_result["score"], 4) | |
# Perform summarization | |
summary_result = summarizer(comment_input, max_length=30, min_length=10, do_sample=False)[0]["summary_text"] | |
# Display results | |
st.subheader("Analysis Result") | |
st.write(f"### **Emotion:** {emotion_label} (Confidence: {emotion_score})") | |
st.write(f"### **Comment Summary:** {summary_result}") | |