Spaces:
Sleeping
Sleeping
import gradio | |
import numpy | |
from pathlib import Path | |
from PIL import Image | |
from fastai.vision.all import load_learner, PILImage, PILMask | |
MODEL_PATH = Path('.') / 'models' | |
TEST_IMAGES_PATH = Path('.') / 'test' | |
def preprocess_mask(file_name): | |
"""Ensures masks are in grayscale format and removes transparency.""" | |
mask_path = Path( | |
'/kaggle/input/car-segmentation/car-segmentation/masks') / file_name.name | |
mask = Image.open(mask_path) | |
# Convert palette-based images to RGBA first to ensure proper color interpretation | |
if mask.mode == 'P': | |
mask = mask.convert('RGBA') | |
# Convert any non-RGBA images to RGBA | |
if mask.mode != 'RGBA': | |
mask = mask.convert('RGBA') | |
mask_data = mask.getdata() | |
# Replace fully transparent pixels with black (or another valid label) | |
new_mask_data = [ | |
# Ensure full opacity in new mask | |
(r, g, b, 255) if a > 0 else (0, 0, 0, 255) | |
for r, g, b, a in mask_data | |
] | |
mask.putdata(new_mask_data) | |
# Convert to grayscale after handling transparency | |
return PILMask.create(mask.convert('L')) | |
LEARNER = load_learner(MODEL_PATH / 'car-segmentation_v1.pkl') | |
def segment_image(image): | |
image = PILImage.create(image) | |
prediction, _, _ = LEARNER.predict(image) | |
prediction_array = numpy.array(prediction, dtype=numpy.uint8) | |
# Normalize class indices to 0-255 for proper visualization | |
prediction_array = (prediction_array / prediction_array.max()) * 255 | |
return prediction_array.astype(numpy.uint8) | |
demo = gradio.Interface( | |
segment_image, | |
inputs=gradio.Image(type='pil'), | |
outputs=gradio.Image(type='numpy'), | |
examples=[str(image) for image in TEST_IMAGES_PATH.iterdir()] | |
) | |
demo.launch() | |