import gradio from pathlib import Path from fastai.vision.all import ( load_learner ) import gradio.interface CATEGORIES = ('Damaged', 'Whole') MODEL_PATH = Path('.') / 'models' TEST_IMAGES_PATH = Path('.') / 'test' LEARNER = load_learner(MODEL_PATH / 'car-damage-detection_v2.pkl') def categorize_image(image): prediction, index, probabilities = LEARNER.predict(image) return dict(zip(CATEGORIES, map(float, probabilities))) demo = gradio.Interface( categorize_image, inputs='image', outputs='label', examples=[str(image) for image in TEST_IMAGES_PATH.iterdir()] ) demo.launch()