import json from huggingface_hub import InferenceClient import gradio as gr import os # Load prompts from JSON file def load_prompts_from_json(file_path): with open(file_path, 'r') as file: return json.load(file) # Load prompts from 'prompts.json' prompts = load_prompts_from_json('prompts.json') # Inference client client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1") # Secret prompt from environment variable (if needed) secret_prompt = os.getenv("SECRET_PROMPT") def format_prompt(new_message, history, prompt_type='default'): prompt = prompts.get(prompt_type, secret_prompt) for user_msg, bot_msg in history: prompt += f"[INST] {user_msg} [/INST]" prompt += f" {bot_msg} " prompt += f"[INST] {new_message} [/INST]" return prompt def generate(prompt, history, temperature=0.25, max_new_tokens=512, top_p=0.95, repetition_penalty=1.0, prompt_type='default'): # Configuration of parameters temperature = float(temperature) if temperature < 1e-2: temperature = 1e-2 top_p = float(top_p) generate_kwargs = dict( temperature=temperature, max_new_tokens=max_new_tokens, top_p=top_p, repetition_penalty=repetition_penalty, do_sample=True, seed=727, ) formatted_prompt = format_prompt(prompt, history, prompt_type) stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False) output = "" for response in stream: output += response.token.text yield output return output, history + [(prompt, output)] # Store conversation history # Chatbot without avatars and with transparent design samir_chatbot = gr.Chatbot(bubble_full_width=True, show_label=False, show_copy_button=False, likeable=False) # Dropdown for prompt types prompt_type_dropdown = gr.Dropdown(choices=list(prompts.keys()), label="Prompt Type", value='default') # Minimalistic theme and Gradio demo configuration theme = 'syddharth/gray-minimal' # Choose how you want to handle state: # Option 1: No State Management (if conversation history is not needed) demo = gr.Interface( fn=generate, inputs=[ gr.Textbox(lines=2, label="Input"), gr.Slider(0, 1, value=0.25, label="Temperature"), gr.Slider(1, 2048, value=512, step=1, label="Max Tokens"), gr.Slider(0, 1, value=0.95, label="Top P"), gr.Slider(1, 2, value=1.0, label="Repetition Penalty"), prompt_type_dropdown ], outputs=[samir_chatbot], title="Tutorial Master", theme=theme ) # Option 2: State Management for Conversation History demo = gr.Interface( fn=generate, inputs=[ gr.Textbox(lines=2, label="Input"), "state" # State input for conversation history ], outputs=[samir_chatbot], title="Tutorial Master", theme=theme ) # Launch the demo with the queue demo.queue().launch(show_api=False)