Spaces:
Runtime error
Runtime error
File size: 2,538 Bytes
86cf89c 2f68a4d 86cf89c 2f68a4d 90bb6d8 2f68a4d 90bb6d8 2f68a4d 86cf89c 2f68a4d 86cf89c 90bb6d8 2f68a4d 86cf89c 90bb6d8 2f68a4d 90bb6d8 2f68a4d 86cf89c 90bb6d8 2f68a4d 86cf89c 2f68a4d 90bb6d8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
import json
from huggingface_hub import InferenceClient
import gradio as gr
import os
# Laden der Prompts aus der JSON-Datei
def load_prompts_from_json(file_path):
with open(file_path, 'r') as file:
return json.load(file)
# Angenommen, Sie haben eine JSON-Datei namens 'prompts.json'
prompts = load_prompts_from_json('prompts.json')
# Klient für die Inferenz
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
# Geheime Eingabeaufforderung aus Umgebungsvariablen
secret_prompt = os.getenv("SECRET_PROMPT")
def format_prompt(new_message, history, prompt_type='default'):
prompt = prompts.get(prompt_type, secret_prompt)
for user_msg, bot_msg in history:
prompt += f"[INST] {user_msg} [/INST]"
prompt += f" {bot_msg}</s> "
prompt += f"[INST] {new_message} [/INST]"
return prompt
def generate(prompt, history, temperature=0.25, max_new_tokens=512, top_p=0.95, repetition_penalty=1.0, prompt_type='default'):
# Konfiguration der Parameter
temperature = float(temperature)
if temperature < 1e-2:
temperature = 1e-2
top_p = float(top_p)
generate_kwargs = dict(
temperature=temperature,
max_new_tokens=max_new_tokens,
top_p=top_p,
repetition_penalty=repetition_penalty,
do_sample=True,
seed=727,
)
formatted_prompt = format_prompt(prompt, history, prompt_type)
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
output = ""
for response in stream:
output += response.token.text
yield output
return output
# Chatbot ohne Avatare und mit transparentem Design
samir_chatbot = gr.Chatbot(bubble_full_width=True, show_label=False, show_copy_button=False, likeable=False)
# Dropdown für Prompt-Typen
prompt_type_dropdown = gr.Dropdown(choices=list(prompts.keys()), label="Prompt-Typ", value='default')
# Minimalistisches Theme und Konfiguration der Gradio-Demo
theme = 'syddharth/gray-minimal'
demo = gr.Interface(
fn=generate,
inputs=[
gr.Textbox(lines=2, label="Eingabe"),
"state",
gr.Slider(0, 1, value=0.25, label="Temperature"),
gr.Slider(1, 2048, value=512, step=1, label="Max Tokens"),
gr.Slider(0, 1, value=0.95, label="Top P"),
gr.Slider(1, 2, value=1.0, label="Repetition Penalty"),
prompt_type_dropdown
],
outputs=[samir_chatbot],
title="Tutorial Master",
theme=theme
)
demo.queue().launch(show_api=False) |