File size: 11,459 Bytes
e7abd9e
 
 
 
 
 
 
 
 
 
 
 
 
 
a1481ee
 
 
 
 
 
 
 
 
 
 
 
 
 
72cf9ba
a1481ee
e7abd9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e9fa6a
 
 
 
 
 
 
 
 
 
 
 
72cf9ba
2e9fa6a
 
 
e7abd9e
2e9fa6a
 
 
 
 
 
 
e7abd9e
 
72cf9ba
e7abd9e
2e9fa6a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e7abd9e
 
61ad19e
 
 
 
 
 
 
 
 
 
 
 
 
e3a2a55
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61ad19e
e7abd9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15f2c01
e7abd9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
import React from "react";
import {
  Box,
  Typography,
  Paper,
  IconButton,
  Tooltip,
  Alert,
  Link,
} from "@mui/material";
import ContentCopyIcon from "@mui/icons-material/ContentCopy";
import PageHeader from "../../components/shared/PageHeader";

const citations = [
  {
    title: "Plutus: Benchmarking Large Language Models in Low-Resource Greek Finance",
    authors:
      "Xueqing Peng et al.",
    citation: `@misc{peng2025plutusbenchmarkinglargelanguage,
      title={Plutus: Benchmarking Large Language Models in Low-Resource Greek Finance}, 
      author={Xueqing Peng and Triantafillos Papadopoulos and Efstathia Soufleri and Polydoros Giannouris and Ruoyu Xiang and Yan Wang and Lingfei Qian and Jimin Huang and Qianqian Xie and Sophia Ananiadou},
      year={2025},
      eprint={2502.18772},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2502.18772}, 
}`,
    type: "main",
    url: "https://arxiv.org/abs/2502.18772",
  },
  {
    title: "Evaluation Framework",
    authors: "Leo Gao et al.",
    citation: `@software{eval-harness,
  author       = {Gao, Leo and Tow, Jonathan and Biderman, Stella and Black, Sid and DiPofi, Anthony and Foster, Charles and Golding, Laurence and Hsu, Jeffrey and McDonell, Kyle and Muennighoff, Niklas and Phang, Jason and Reynolds, Laria and Tang, Eric and Thite, Anish and Wang, Ben and Wang, Kevin and Zou, Andy},
  title        = {A framework for few-shot language model evaluation},
  month        = sep,
  year         = 2021,
  publisher    = {Zenodo},
  version      = {v0.0.1},
  doi          = {10.5281/zenodo.5371628},
  url          = {https://doi.org/10.5281/zenodo.5371628},
}`,
    url: "https://doi.org/10.5281/zenodo.5371628",
  },
];

const priorWork = [
  {
    title: "The financial narrative summarisation shared task (FNS 2023)",
    authors:
      "Elias Zavitsanos et al.",
    citation: `@inproceedings{zavitsanos2023financial,
  title={The financial narrative summarisation shared task (FNS 2023)},
  author={Zavitsanos, Elias and Kosmopoulos, Aris and Giannakopoulos, George and Litvak, Marina and Carbajo-Coronado, Blanca and Moreno-Sandoval, Antonio and El-Haj, Mo},
  booktitle={2023 IEEE International Conference on Big Data (BigData)},
  pages={2890--2896},
  year={2023},
  organization={IEEE}
}`,
    type: "main",
    url: "https://ieeexplore.ieee.org/document/10386228",
  },
  {
    title: "MultiFin: A dataset for multilingual financial NLP",
    authors:
      "Rasmus J{\o}rgensen et al.",
    citation: `@inproceedings{jorgensen2023multifin,
  title={MultiFin: A dataset for multilingual financial NLP},
  author={J{\o}rgensen, Rasmus and Brandt, Oliver and Hartmann, Mareike and Dai, Xiang and Igel, Christian and Elliott, Desmond},
  booktitle={Findings of the Association for Computational Linguistics: EACL 2023},
  pages={894--909},
  year={2023}
}`,
    type: "main",
    url: "https://aclanthology.org/2023.findings-eacl.66/",
  },
//   {
//     title: "PIXIU: a large language model, instruction data and evaluation benchmark for finance",
//     authors:
//       "Qianqian Xie et al.",
//     citation: `@inproceedings{10.5555/3666122.3667576,
// author = {Xie, Qianqian and Han, Weiguang and Zhang, Xiao and Lai, Yanzhao and Peng, Min and Lopez-Lira, Alejandro and Huang, Jimin},
// title = {PIXIU: a large language model, instruction data and evaluation benchmark for finance},
// year = {2024},
// publisher = {Curran Associates Inc.},
// address = {Red Hook, NY, USA},
// abstract = {Although large language models (LLMs) have shown great performance in natural language processing (NLP) in the financial domain, there are no publicly available financially tailored LLMs, instruction tuning datasets, and evaluation benchmarks, which is critical for continually pushing forward the open-source development of financial artificial intelligence (AI). This paper introduces PIXIU, a comprehensive framework including the first financial LLM based on fine-tuning LLaMA with instruction data, the first instruction data with 128K data samples to support the fine-tuning, and an evaluation benchmark with 8 tasks and 15 datasets. We first construct the large-scale multi-task instruction data considering a variety of financial tasks, financial document types, and financial data modalities. We then propose a financial LLM called FinMA by fine-tuning LLaMA with the constructed dataset to be able to follow instructions for various financial tasks. To support the evaluation of financial LLMs, we propose a standardized benchmark that covers a set of critical financial tasks, including six financial NLP tasks and two financial prediction tasks. With this benchmark, we conduct a detailed analysis of FinMA and several existing LLMs, uncovering their strengths and weaknesses in handling critical financial tasks. The model, datasets, benchmark, and experimental results are open-sourced to facilitate future research in financial AI.},
// booktitle = {Proceedings of the 37th International Conference on Neural Information Processing Systems},
// articleno = {1454},
// numpages = {16},
// location = {New Orleans, LA, USA},
// series = {NIPS '23}
// }`,
//     type: "main",
//   },
];

const benchmarks = [
  {
    title: "FinBen: A Holistic Financial Benchmark for Large Language Models",
    authors: "Qianqian Xie et al.",
    citation: `@article{xie2024finben,
  title={The finben: An holistic financial benchmark for large language models},
  author={Xie, Qianqian and Han, Weiguang and Chen, Zhengyu and Xiang, Ruoyu and Zhang, Xiao and He, Yueru and Xiao, Mengxi and Li, Dong and Dai, Yongfu and Feng, Duanyu and others},
  journal={arXiv preprint arXiv:2402.12659},
  year={2024}
}`,
    type: "main",
    url: "https://arxiv.org/abs/2402.12659",
  },
//   {
//     title: "MultiFin: Instruction-Following Evaluation",
//     authors: "Zhou et al.",
//     citation: `@inproceedings{jorgensen-etal-2023-multifin,
//     title = "{M}ulti{F}in: A Dataset for Multilingual Financial {NLP}",
//     author = "J{\o}rgensen, Rasmus  and
//       Brandt, Oliver  and
//       Hartmann, Mareike  and
//       Dai, Xiang  and
//       Igel, Christian  and
//       Elliott, Desmond",
//     editor = "Vlachos, Andreas  and
//       Augenstein, Isabelle",
//     booktitle = "Findings of the Association for Computational Linguistics: EACL 2023",
//     month = may,
//     year = "2023",
//     address = "Dubrovnik, Croatia",
//     publisher = "Association for Computational Linguistics",
//     url = "https://aclanthology.org/2023.findings-eacl.66/",
//     doi = "10.18653/v1/2023.findings-eacl.66",
//     pages = "894--909",
//     abstract = "Financial information is generated and distributed across the world, resulting in a vast amount of domain-specific multilingual data. Multilingual models adapted to the financial domain would ease deployment when an organization needs to work with multiple languages on a regular basis. For the development and evaluation of such models, there is a need for multilingual financial language processing datasets. We describe MultiFin {--} a publicly available financial dataset consisting of real-world article headlines covering 15 languages across different writing systems and language families. The dataset consists of hierarchical label structure providing two classification tasks: multi-label and multi-class. We develop our annotation schema based on a real-world application and annotate our dataset using both {\textquoteleft}label by native-speaker' and {\textquoteleft}translate-then-label' approaches. The evaluation of several popular multilingual models, e.g., mBERT, XLM-R, and mT5, show that although decent accuracy can be achieved in high-resource languages, there is substantial room for improvement in low-resource languages."
// }`,
//     url: "https://aclanthology.org/2023.findings-eacl.66/#:~:text=We%20describe%20MultiFin%20%2D%2D%20a,%2Dlabel%20and%20multi%2Dclass.",
//   },
];

const CitationBlock = ({ citation, title, authors, url, type }) => {
  const handleCopy = () => {
    navigator.clipboard.writeText(citation);
  };

  return (
    <Paper
      elevation={0}
      sx={{
        p: 3,
        border: "1px solid",
        borderColor: "grey.200",
        backgroundColor: "transparent",
        borderRadius: 2,
        position: "relative",
      }}
    >
      <Box sx={{ mb: 2 }}>
        <Typography variant="h6" sx={{ mb: 0.5 }}>
          {title}
        </Typography>
        <Typography variant="body2" color="text.secondary">
          {authors}
        </Typography>
        {url && (
          <Link
            href={url}
            target="_blank"
            rel="noopener noreferrer"
            sx={{ fontSize: "0.875rem", display: "block", mt: 0.5 }}
          >
            View paper →
          </Link>
        )}
      </Box>
      <Box
        sx={{
          backgroundColor: "grey.900",
          borderRadius: 1,
          p: 2,
          position: "relative",
        }}
      >
        <Tooltip title="Copy citation" placement="top">
          <IconButton
            onClick={handleCopy}
            size="small"
            sx={{
              position: "absolute",
              top: 8,
              right: 8,
              color: "grey.500",
              "&:hover": {
                color: "grey.300",
              },
            }}
          >
            <ContentCopyIcon fontSize="small" />
          </IconButton>
        </Tooltip>
        <Box
          component="pre"
          sx={{
            margin: 0,
            color: "#fff",
            fontSize: "0.875rem",
            fontFamily: "monospace",
            whiteSpace: "pre",
            textAlign: "left",
            overflow: "auto",
          }}
        >
          <code>{citation}</code>
        </Box>
      </Box>
    </Paper>
  );
};

function QuotePage() {
  return (
    <Box sx={{ width: "100%", maxWidth: 1200, margin: "0 auto", padding: 4 }}>
      <PageHeader
        title="Citation Information"
        subtitle="How to cite the Open Greek Financial LLM Leaderboard in your work"
      />

      <Alert severity="info" sx={{ mb: 4 }}>
        <Typography variant="body2">
          The citations below include both the leaderboard itself and the
          individual benchmarks used in our evaluation suite.
        </Typography>
      </Alert>

      <Box sx={{ mb: 6 }}>
        <Typography variant="h5" sx={{ mb: 3 }}>
          Leaderboard
        </Typography>
        <Box sx={{ display: "flex", flexDirection: "column", gap: 3 }}>
          {citations.map((citation, index) => (
            <CitationBlock key={index} {...citation} />
          ))}
        </Box>
      </Box>

      <Box sx={{ mb: 6 }}>
        <Typography variant="h5" sx={{ mb: 3 }}>
          Benchmarks
        </Typography>
        <Box sx={{ display: "flex", flexDirection: "column", gap: 3 }}>
          {benchmarks.map((benchmark, index) => (
            <CitationBlock key={index} {...benchmark} />
          ))}
        </Box>
      </Box>

      <Box>
        <Typography variant="h5" sx={{ mb: 3 }}>
          Prior Work
        </Typography>
        <Box sx={{ display: "flex", flexDirection: "column", gap: 3 }}>
          {priorWork.map((citation, index) => (
            <CitationBlock key={index} {...citation} />
          ))}
        </Box>
      </Box>
    </Box>
  );
}

export default QuotePage;