File size: 9,578 Bytes
e7abd9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a9e4d8
 
e7abd9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1e551a
 
 
 
 
 
e7abd9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd652a9
 
 
 
 
 
e35364e
e7abd9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1e551a
 
e7abd9e
 
 
 
 
 
 
 
f1e551a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e7abd9e
 
 
 
 
f1e551a
e7abd9e
 
 
 
f1e551a
 
 
 
 
 
 
 
 
 
 
 
e7abd9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
import { useMemo } from "react";
import {
  looksLikeRegex,
  parseSearchQuery,
  getValueByPath,
} from "../utils/searchUtils";

// Calculate min/max averages
export const useAverageRange = (data) => {
  return useMemo(() => {
    const averages = data.map((item) => item.model.average_score);
    return {
      minAverage: Math.min(...averages),
      maxAverage: Math.max(...averages),
    };
  }, [data]);
};

// Generate colors for scores
export const useColorGenerator = (minAverage, maxAverage) => {
  return useMemo(() => {
    const colorCache = new Map();
    return (value) => {
      const cached = colorCache.get(value);
      if (cached) return cached;

      const normalizedValue = (value - minAverage) / (maxAverage - minAverage);
      const red = Math.round(255 * (1 - normalizedValue) * 1);
      const green = Math.round(255 * normalizedValue) * 1;
      // const color = `rgba(${red}, ${green}, 0, 1)`;
      const color = `rgba(${red}, 0, ${green}, 1)`;
      colorCache.set(value, color);
      return color;
    };
  }, [minAverage, maxAverage]);
};

// Process data with boolean standardization
export const useProcessedData = (data, averageMode, visibleColumns) => {
  return useMemo(() => {
    let processed = data.map((item) => {
      const evaluationScores = Object.entries(item.evaluations)
        .filter(([key]) => {
          if (averageMode === "all") return true;
          return visibleColumns.includes(`evaluations.${key}.normalized_score`);
        })
        .map(([, value]) => value.normalized_score);

      const average =
        evaluationScores.length > 0
          ? evaluationScores.reduce((a, b) => a + b, 0) /
            evaluationScores.length
          : averageMode === "visible"
          ? null
          : 0;

      // Boolean standardization
      const standardizedFeatures = {
        ...item.features,
        is_moe: Boolean(item.features.is_moe),
        is_flagged: Boolean(item.features.is_flagged),
        is_highlighted_by_maintainer: Boolean(
          item.features.is_highlighted_by_maintainer
        ),
        is_merged: Boolean(item.features.is_merged),
        is_not_available_on_hub: Boolean(item.features.is_not_available_on_hub),
      };

      return {
        ...item,
        features: standardizedFeatures,
        model: {
          ...item.model,
          has_chat_template: Boolean(item.model.has_chat_template),
          average_score: average,
        },
      };
    });

    processed.sort((a, b) => {
      if (a.model.average_score === null && b.model.average_score === null)
        return 0;
      if (a.model.average_score === null) return 1;
      if (b.model.average_score === null) return -1;
      return b.model.average_score - a.model.average_score;
    });

    return processed.map((item, index) => ({
      ...item,
      static_rank: index + 1,
    }));
  }, [data, averageMode, visibleColumns]);
};

// Common filtering logic
export const useFilteredData = (
  processedData,
  selectedPrecisions,
  selectedTypes,
  paramsRange,
  searchValue,
  selectedBooleanFilters,
  rankingMode,
  pinnedModels = [],
  isOfficialProviderActive = false
) => {
  return useMemo(() => {
    const pinnedData = processedData.filter((row) => {
      return pinnedModels.includes(row.id);
    });
    const unpinnedData = processedData.filter((row) => {
      return !pinnedModels.includes(row.id);
    });

    let filteredUnpinned = unpinnedData;

    // Filter by official providers
    if (isOfficialProviderActive) {
      filteredUnpinned = filteredUnpinned.filter(
        (row) =>
          row.features?.is_highlighted_by_maintainer ||
          row.metadata?.is_highlighted_by_maintainer
      );
    }

    // Filter by precision
    if (selectedPrecisions.length > 0) {
      filteredUnpinned = filteredUnpinned.filter((row) =>
        selectedPrecisions.includes(row.model.precision)
      );
    }

    // Filter by type
    if (selectedTypes.length > 0) {
      filteredUnpinned = filteredUnpinned.filter((row) => {
        const modelType = row.model.type?.toLowerCase().trim();
        return selectedTypes.some((type) => modelType?.includes(type));
      });
    }

    // Filter by parameters
    filteredUnpinned = filteredUnpinned.filter((row) => {
      // Skip parameter filtering if no filter is active
      if (paramsRange[0] === -1 && paramsRange[1] === 140) return true;

      const params =
        row.metadata?.params_billions || row.features?.params_billions;
      if (params === undefined || params === null) return false;
      return params >= paramsRange[0] && params < paramsRange[1];
    });

    // Filter by search
    if (searchValue) {
      const searchQueries = searchValue
        .split(";")
        .map((q) => q.trim())
        .filter((q) => q);
      if (searchQueries.length > 0) {
        filteredUnpinned = filteredUnpinned.filter((row) => {
          return searchQueries.some((query) => {
            const { specialSearches, textSearch } = parseSearchQuery(query);

            const specialSearchMatch = specialSearches.every(
              ({ field, value }) => {
                const fieldValue = getValueByPath(row, field)
                  ?.toString()
                  .toLowerCase();
                return fieldValue?.includes(value.toLowerCase());
              }
            );

            if (!specialSearchMatch) return false;
            if (!textSearch) return true;

            const modelName = row.model.name.toLowerCase();
            const searchLower = textSearch.toLowerCase();

            if (looksLikeRegex(textSearch)) {
              try {
                const regex = new RegExp(textSearch, "i");
                return regex.test(modelName);
              } catch (e) {
                return modelName.includes(searchLower);
              }
            } else {
              return modelName.includes(searchLower);
            }
          });
        });
      }
    }

    // Filter by booleans
    if (selectedBooleanFilters.length > 0) {
      filteredUnpinned = filteredUnpinned.filter((row) => {
        return selectedBooleanFilters.every((filter) => {
          const filterValue =
            typeof filter === "object" ? filter.value : filter;

          // Maintainer's Highlight keeps positive logic
          if (filterValue === "is_highlighted_by_maintainer") {
            return row.features[filterValue];
          }

          // For all other filters, invert the logic
          if (filterValue === "is_not_available_on_hub") {
            return row.features[filterValue];
          }

          return !row.features[filterValue];
        });
      });
    }

    // Create ordered array of pinned models respecting pinnedModels order
    const orderedPinnedData = pinnedModels
      .map((pinnedModelId) =>
        pinnedData.find((item) => item.id === pinnedModelId)
      )
      .filter(Boolean);

    // Combine all filtered data
    const allFilteredData = [...filteredUnpinned, ...orderedPinnedData];

    // Sort all data by average_score for dynamic_rank
    const sortedByScore = [...allFilteredData].sort((a, b) => {
      // Si les scores moyens sont différents, trier par score
      if (a.model.average_score !== b.model.average_score) {
        if (a.model.average_score === null && b.model.average_score === null)
          return 0;
        if (a.model.average_score === null) return 1;
        if (b.model.average_score === null) return -1;
        return b.model.average_score - a.model.average_score;
      }

      // Si les scores sont égaux, comparer le nom du modèle et la date de soumission
      if (a.model.name === b.model.name) {
        // Si même nom, trier par date de soumission (la plus récente d'abord)
        const dateA = new Date(a.metadata?.submission_date || 0);
        const dateB = new Date(b.metadata?.submission_date || 0);
        return dateB - dateA;
      }

      // Si noms différents, trier par nom
      return a.model.name.localeCompare(b.model.name);
    });

    // Create Map to store dynamic_ranks
    const dynamicRankMap = new Map();
    sortedByScore.forEach((item, index) => {
      dynamicRankMap.set(item.id, index + 1);
    });

    // Add ranks to final data
    const finalData = [...orderedPinnedData, ...filteredUnpinned].map(
      (item) => {
        return {
          ...item,
          dynamic_rank: dynamicRankMap.get(item.id),
          rank: item.isPinned
            ? pinnedModels.indexOf(item.id) + 1
            : rankingMode === "static"
            ? item.static_rank
            : dynamicRankMap.get(item.id),
          isPinned: pinnedModels.includes(item.id),
        };
      }
    );

    return finalData;
  }, [
    processedData,
    selectedPrecisions,
    selectedTypes,
    paramsRange,
    searchValue,
    selectedBooleanFilters,
    rankingMode,
    pinnedModels,
    isOfficialProviderActive,
  ]);
};

// Column visibility management
export const useColumnVisibility = (visibleColumns = []) => {
  // Create secure visibility object
  const columnVisibility = useMemo(() => {
    // Check visible columns
    const safeVisibleColumns = Array.isArray(visibleColumns)
      ? visibleColumns
      : [];

    const visibility = {};
    try {
      safeVisibleColumns.forEach((columnKey) => {
        if (typeof columnKey === "string") {
          visibility[columnKey] = true;
        }
      });
    } catch (error) {
      console.warn("Error in useColumnVisibility:", error);
    }
    return visibility;
  }, [visibleColumns]);

  return columnVisibility;
};