File size: 12,419 Bytes
e7abd9e e3acf44 e7abd9e 3adbd07 cf713d3 e7abd9e 077602c 3adbd07 e7abd9e 04f06ea 3fc563a 04f06ea cf713d3 3fc563a 077602c 3fc563a 04f06ea 62aa434 cf713d3 04f06ea cf713d3 04f06ea cf713d3 04f06ea cf713d3 04f06ea cf713d3 62aa434 e7abd9e 014d36a e7abd9e 014d36a e7abd9e 014d36a e7abd9e 014d36a e7abd9e 014d36a e7abd9e 014d36a e7abd9e 014d36a e7abd9e a5b3d73 e7abd9e 8e899eb e7abd9e 8e899eb 014d36a e7abd9e 014d36a e7abd9e 014d36a e7abd9e 8e899eb e7abd9e 8e899eb e7abd9e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 |
import { Box, Typography } from "@mui/material";
const createTooltipContent = (title, items) => (
<Box sx={{ maxWidth: 400 }}>
<Typography variant="body2" paragraph sx={{ mb: 1, color: "inherit" }}>
{title}
</Typography>
<Box component="ul" sx={{ m: 0, pl: 2 }}>
{items.map(({ label, description, subItems }, index) => (
<li key={index}>
<Typography variant="body2" sx={{ mb: 0.5, color: "inherit" }}>
<b>{label}</b>: {description}
{subItems && (
<Box component="ul" sx={{ mt: 0.5, mb: 1 }}>
{subItems.map((item, subIndex) => (
<li key={subIndex}>
<Typography variant="body2" sx={{ color: "inherit" }}>
{item}
</Typography>
</li>
))}
</Box>
)}
</Typography>
</li>
))}
</Box>
</Box>
);
export const COLUMN_TOOLTIPS = {
AVERAGE: createTooltipContent("Average score across all benchmarks:", [
{
label: "Calculation",
description: "Weighted average of normalized scores from all benchmarks",
subItems: [
"Each benchmark is normalized to a 0-100 scale",
"All normalised benchmarks are then averaged together",
],
},
]),
MULTIFIN: createTooltipContent("Multilingual Financial NLP (MultiFin):", [
{
label: "Purpose",
description:
"Tests model's ability to understand real-world financial article headlines",
subItems: ["Language Understanding", "Topic Classification"],
},
{
label: "Scoring: ACC Norm",
description: "Was the correct choice selected among the options.",
},
]),
QA: createTooltipContent("Greek Financial Question Answering (QA):", [
{
label: "Purpose",
description:
"Tests model's ability to understand real-world Greek financial exam questions",
subItems: ["Language Understanding", "Question Answering"],
},
{
label: "Scoring: ACC Norm",
description: "Was the correct choice selected among the options.",
},
]),
FNS: createTooltipContent("Financial Narrative Summarization (FNS):", [
{
label: "Purpose",
description:
"Tests model's ability to summarize real-world financial annual reports",
subItems: ["Language Understanding", "Abstractive Summarization"],
},
{
label: "Scoring: Rouge1",
description: "Was the overlap of unigrams (each word) between the predicted and reference summaries.",
},
]),
FinNum: createTooltipContent("Financial Number Entity Recognition (FinNum):", [
{
label: "Purpose",
description:
"Tests model's ability to recognize numbers from financial texts",
subItems: ["Language Understanding", "Named Entity Recognition"],
},
{
label: "Scoring: Rouge1",
description: "Was the overlap of unigrams (each word) between the predicted and reference summaries.",
},
]),
FinText: createTooltipContent("Financial Named Entity Recognition (FinText):", [
{
label: "Purpose",
description:
"Tests model's ability to recognize financial entities, i.e, person, location, and organization",
subItems: ["Language Understanding", "Named Entity Recognition"],
},
{
label: "Scoring: Rouge1",
description: "Was the overlap of unigrams (each word) between the predicted and reference summaries.",
},
]),
ARCHITECTURE: createTooltipContent("Model Architecture Information:", [
{
label: "Definition",
description: "The fundamental structure and design of the model",
subItems: [
"Pretrained: Foundational models, initially trained on large datasets without task-specific tuning, serving as a versatile base for further development.",
"Continuously Pretrained: Base models trained with a data mix evolving as the model is trained, with the addition of specialized data during the last training steps.",
"Fine-tuned: Base models, fine-tuned on specialised domain data (legal, medical, ...), and optimized for particular tasks.",
"Chat: Models fine-tuned with IFT, RLHF, DPO, and other techniques, to handle conversational contexts effectively.",
"Merged: Combining multiple models through weights averaging or similar methods.",
"Multimodal: Models which can handle several modalities (text & image/audio/video/...). We only evaluate the text capabilities.",
],
},
{
label: "Impact",
description: "How architecture affects model capabilities",
subItems: [
"Base models are expected to perform less well on instruction following evaluations, like IFEval.",
"Fine-tuned and chat models can be more verbose and more chatty than base models.",
"Merged models tend to exhibit good performance on benchmarks, which do not translate to real-world situations.",
],
},
]),
PRECISION: createTooltipContent("Numerical Precision Format:", [
{
label: "Overview",
description:
"Data format used to store model weights and perform computations",
subItems: [
"bfloat16: Half precision (Brain Float format), good for stability",
"float16: Half precision",
"8bit/4bit: Quantized formats, for efficiency",
"GPTQ/AWQ: Quantized methods",
],
},
{
label: "Impact",
description: "How precision affects model deployment",
subItems: [
"Higher precision = better accuracy but more memory usage",
"Lower precision = faster inference and smaller size",
"Trade-off between model quality and resource usage",
],
},
]),
FLAGS: createTooltipContent("Model Flags and Special Features:", [
{
label: "Filters",
subItems: [
"Mixture of Expert: Uses a MoE architecture",
"Merged models: Created by averaging other models",
"Contaminated: Flagged by users from the community for (possibly accidental) cheating",
"Unavailable: No longer on the hub (private, deleted) or missing a license tag",
],
},
{
label: "Purpose",
description: "Why do people want to hide these models?",
subItems: [
"Mixture of Experts: These models can be too parameter heavy",
"Merged models: Performance on benchmarks tend to be inflated compared to real life usage",
"Contaminated: Performance on benchmarks is inflated and not reflecting real life usage",
],
},
]),
PARAMETERS: createTooltipContent("Model Parameters:", [
{
label: "Measurement",
description: "Total number of trainable parameters in billions",
subItems: [
"Indicates model capacity and complexity",
"Correlates with computational requirements",
"Influences memory usage and inference speed",
],
},
]),
LICENSE: createTooltipContent("Model License Information:", [
{
label: "Importance",
description: "Legal terms governing model usage and distribution",
subItems: [
"Commercial vs non-commercial use",
"Attribution requirements",
"Modification and redistribution rights",
"Liability and warranty terms",
],
},
]),
CO2_COST: createTooltipContent("Carbon Dioxide Emissions:", [
{
label: "What is it?",
description: "CO₂ emissions of the model evaluation ",
subItems: [
"Only focuses on model inference for our specific setup",
"Considers data center location and energy mix",
"Allows equivalent comparision of models on our use case",
],
},
{
label: "Why it matters",
description: "Environmental impact of AI model training",
subItems: [
"Large models can have significant carbon footprints",
"Helps make informed choices about model selection",
],
},
{
label: "Learn more",
description:
"For detailed information about our CO₂ calculation methodology, visit:",
subItems: [
<a
href="https://huggingface.co/docs/leaderboards/open_llm_leaderboard/emissions"
target="_blank"
rel="noopener noreferrer"
style={{ color: "#90caf9" }}
>
Carbon Emissions Documentation ↗
</a>,
],
},
]),
};
export const UI_TOOLTIPS = {
COLUMN_SELECTOR: "Choose which columns to display in the table",
DISPLAY_OPTIONS: createTooltipContent("Table Display Options", [
{
label: "Overview",
description: "Configure how the table displays data and information",
subItems: [
"Row size and layout",
"Score display format",
"Ranking calculation",
"Average score computation",
],
},
]),
SEARCH_BAR: createTooltipContent("Advanced Model Search", [
{
label: "Name Search",
description: "Search directly by model name",
subItems: [
"Supports regular expressions (e.g., ^mistral.*7b)",
"Case sensitive",
],
},
{
label: "Field Search",
description: "Use @field:value syntax for precise filtering",
subItems: [
"@architecture:llama - Filter by architecture",
"@license:mit - Filter by license",
"@precision:float16 - Filter by precision",
"@type:chat - Filter by model type",
],
},
{
label: "Multiple Searches",
description: "Combine multiple criteria using semicolons",
subItems: [
"meta @license:mit; @architecture:llama",
"^mistral.*7b; @precision:float16",
],
},
]),
QUICK_FILTERS: createTooltipContent(
"Filter models based on their size and applicable hardware:",
[
{
label: "Edge devices (Up to 3BB)",
description:
"Efficient models for edge devices, optimized for blazing fast inference.",
},
{
label: "Smol Models (3B-7B)",
description:
"Efficient models for consumer hardware, optimized for fast inference.",
},
{
label: "Mid-range models (7B-65B)",
description:
"A bit of everything here, with overall balanced performance and resource usage around 30B.",
},
{
label: "GPU-rich models (65B+)",
description:
"State-of-the-art performance for complex tasks, requires significant computing power.",
},
{
label: "Official Providers",
description:
"Models directly maintained by their original creators, ensuring reliability and up-to-date performance.",
},
]
),
ROW_SIZE: {
title: "Row Size",
description:
"Adjust the height of table rows. Compact is ideal for viewing more data at once, while Large provides better readability and touch targets.",
},
SCORE_DISPLAY: {
title: "Score Display",
description:
"Choose between normalized scores (0-100% scale for easy comparison) or raw scores (actual benchmark results). Normalized scores help compare performance across different benchmarks, while raw scores show actual benchmark outputs.",
},
RANKING_MODE: {
title: "Ranking Mode",
description:
"Choose between static ranking (original position in the full leaderboard) or dynamic ranking (position based on current filters and sorting).",
},
AVERAGE_SCORE: {
title: "Average Score Calculation",
description:
"Define how the average score is calculated. 'All Scores' uses all benchmarks, while 'Visible Only' calculates the average using only the visible benchmark columns.",
},
};
export const getTooltipStyle = {};
export const TABLE_TOOLTIPS = {
HUB_LINK: (modelName) => `View ${modelName} on Hugging Face Hub`,
EVAL_RESULTS: (modelName) =>
`View detailed evaluation results for ${modelName}`,
POSITION_CHANGE: (change) =>
`${Math.abs(change)} position${Math.abs(change) > 1 ? "s" : ""} ${
change > 0 ? "up" : "down"
}`,
METADATA: {
TYPE: (type) => type || "-",
ARCHITECTURE: (arch) => arch || "-",
PRECISION: (precision) => precision || "-",
LICENSE: (license) => license || "-",
UPLOAD_DATE: (date) => date || "-",
SUBMISSION_DATE: (date) => date || "-",
BASE_MODEL: (model) => model || "-",
},
};
|