Spaces:
Running
Running
ThanaritKanjanametawat
commited on
Commit
·
57bafce
1
Parent(s):
2addb51
Deploying Roberta Sentinel
Browse files- ModelDriver.py +54 -0
- app.py +9 -8
ModelDriver.py
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import RobertaTokenizer, RobertaForSequenceClassification, RobertaModel
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
|
5 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
6 |
+
class MLP(nn.Module):
|
7 |
+
def __init__(self, input_dim):
|
8 |
+
super(MLP, self).__init__()
|
9 |
+
self.fc1 = nn.Linear(input_dim, 256)
|
10 |
+
self.fc2 = nn.Linear(256, 2)
|
11 |
+
self.gelu = nn.GELU()
|
12 |
+
|
13 |
+
def forward(self, x):
|
14 |
+
x = self.gelu(self.fc1(x))
|
15 |
+
x = self.fc2(x)
|
16 |
+
return x
|
17 |
+
def extract_features(text):
|
18 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
19 |
+
|
20 |
+
tokenizer = RobertaTokenizer.from_pretrained("roberta-base")
|
21 |
+
model = RobertaModel.from_pretrained("roberta-base").to(device)
|
22 |
+
tokenized_text = tokenizer.encode(text, truncation=True, max_length=512, return_tensors="pt")
|
23 |
+
outputs = model(tokenized_text)
|
24 |
+
last_hidden_states = outputs.last_hidden_state
|
25 |
+
TClassification = last_hidden_states[:, 0, :].squeeze().detach().numpy()
|
26 |
+
return TClassification
|
27 |
+
|
28 |
+
def RobertaSentinelOpenGPTInference(input_text):
|
29 |
+
features = extract_features(input_text)
|
30 |
+
loaded_model = MLP(768).to(device)
|
31 |
+
loaded_model.load_state_dict(torch.load("MLPDictStates/RobertaSentinelOpenGPT.pth"))
|
32 |
+
|
33 |
+
# Define the tokenizer and model for feature extraction
|
34 |
+
with torch.no_grad():
|
35 |
+
inputs = torch.tensor(features).to(device)
|
36 |
+
outputs = loaded_model(inputs.float())
|
37 |
+
_, predicted = torch.max(outputs, 1)
|
38 |
+
|
39 |
+
return predicted.item()
|
40 |
+
|
41 |
+
def RobertaSentinelCSAbstractInference(input_text):
|
42 |
+
features = extract_features(input_text)
|
43 |
+
loaded_model = MLP(768).to(device)
|
44 |
+
loaded_model.load_state_dict(torch.load("MLPDictStates/RobertaSentinelCSAbstract.pth"))
|
45 |
+
|
46 |
+
# Define the tokenizer and model for feature extraction
|
47 |
+
with torch.no_grad():
|
48 |
+
inputs = torch.tensor(features).to(device)
|
49 |
+
outputs = loaded_model(inputs.float())
|
50 |
+
_, predicted = torch.max(outputs, 1)
|
51 |
+
|
52 |
+
return predicted.item()
|
53 |
+
|
54 |
+
|
app.py
CHANGED
@@ -1,25 +1,26 @@
|
|
1 |
import streamlit as st
|
2 |
from transformers import pipeline
|
|
|
3 |
|
4 |
# Add a title
|
5 |
st.title('GPT Detection Demo')
|
6 |
|
7 |
# Add 4 options for 4 models
|
8 |
option = st.sidebar.selectbox(
|
9 |
-
'Which
|
10 |
-
('
|
11 |
)
|
12 |
|
13 |
-
option2 = st.sidebar.selectbox(
|
14 |
-
'Which model do you want to use?',
|
15 |
-
('gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'),
|
16 |
-
)
|
17 |
|
18 |
-
pipe = pipeline(option)
|
19 |
text = st.text_area('Enter text here', '')
|
20 |
|
21 |
if st.button('Generate'):
|
22 |
-
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
|
25 |
|
|
|
1 |
import streamlit as st
|
2 |
from transformers import pipeline
|
3 |
+
from ModelDriver import RobertaSentinelOpenGPTInference, RobertaSentinelCSAbstractInference
|
4 |
|
5 |
# Add a title
|
6 |
st.title('GPT Detection Demo')
|
7 |
|
8 |
# Add 4 options for 4 models
|
9 |
option = st.sidebar.selectbox(
|
10 |
+
'Which Model do you want to use?',
|
11 |
+
('RobertaSentinelOpenGPT', 'RobertaSentinelCSAbstract'),
|
12 |
)
|
13 |
|
|
|
|
|
|
|
|
|
14 |
|
|
|
15 |
text = st.text_area('Enter text here', '')
|
16 |
|
17 |
if st.button('Generate'):
|
18 |
+
if option == 'RobertaSentinelOpenGPT':
|
19 |
+
result = RobertaSentinelOpenGPTInference(text)
|
20 |
+
elif option == 'RobertaSentinelCSAbstract':
|
21 |
+
result = RobertaSentinelCSAbstractInference(text)
|
22 |
+
st.write(result)
|
23 |
+
|
24 |
|
25 |
|
26 |
|