import openai import os from openpyxl import load_workbook, Workbook from src.transcribe_image import transcribe_image from src.assess_text import assess_essay_with_gpt # OpenAI API key setup openai.api_key = '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' def process_essays(folder_path, question_file, guidelines_file, excel_file): # Load question and guidelines with open(question_file, 'r') as file: question = file.read().strip() with open(guidelines_file, 'r') as file: guidelines = file.read().strip() # Load the Excel sheet workbook = load_workbook(excel_file) sheet = workbook.active # Create a new workbook to save results new_workbook = Workbook() new_sheet = new_workbook.active # Copy headers for col in range(1, sheet.max_column + 1): new_sheet.cell(row=1, column=col).value = sheet.cell(row=1, column=col).value # Sort images in folder images = sorted([os.path.join(folder_path, img) for img in os.listdir(folder_path)], key=os.path.getmtime) img_index = 0 # First Pass: Transcribe missing texts for row in range(2, sheet.max_row + 1): student_id = sheet.cell(row=row, column=1).value num_pages = sheet.cell(row=row, column=2).value transcribed_text = sheet.cell(row=row, column=3).value # Copy student ID and number of pages new_sheet.cell(row=row, column=1).value = student_id new_sheet.cell(row=row, column=2).value = num_pages # Transcribe if text is missing if transcribed_text is None: print(f"Transcribing essay for student {student_id}...") essay_text = "" for _ in range(num_pages): essay_text += transcribe_image(images[img_index]) + "\n" img_index += 1 new_sheet.cell(row=row, column=3).value = essay_text.strip() else: # Copy the existing transcription if available new_sheet.cell(row=row, column=3).value = transcribed_text # Save current state with transcriptions new_workbook.save("data/transcribed_essays.xlsx") print("All transcriptions completed. Saved as 'transcribed_essays.xlsx'.") # Collect graded examples and initialize list examples = [] for row in range(2, sheet.max_row + 1): student_id = sheet.cell(row=row, column=1).value transcribed_text = sheet.cell(row=row, column=3).value mark = sheet.cell(row=row, column=4).value reason = sheet.cell(row=row, column=5).value # Store graded examples for prompt generation if mark is not None or reason is not None: assert mark is not None and reason is not None, f"Mark or reason missing for student {student_id}." examples.append({"essay": transcribed_text, "mark": mark, "reason": reason}) # Second Pass: Grade missing grades/reasons for row in range(2, sheet.max_row + 1): student_id = sheet.cell(row=row, column=1).value transcribed_text = new_sheet.cell(row=row, column=3).value mark = sheet.cell(row=row, column=4).value reason = sheet.cell(row=row, column=5).value if mark is None and reason is None: print(f"Assessing essay for student {student_id}...") assessment = assess_essay_with_gpt(transcribed_text, question, guidelines, examples) new_sheet.cell(row=row, column=4).value = assessment['mark'] new_sheet.cell(row=row, column=5).value = assessment['reason'] # Add the assessed essay as an example for subsequent assessments examples.append({"essay": transcribed_text, "mark": assessment['mark'], "reason": assessment['reason']}) else: # Copy the existing mark and reason to the new sheet new_sheet.cell(row=row, column=4).value = mark new_sheet.cell(row=row, column=5).value = reason # Save the new Excel file with assessments filled in new_workbook.save(excel_file.replace(".xlsx", "_assessed.xlsx")) print("Assessment complete. Results saved in assessed version of the Excel file.") # Replace with actual file paths process_essays( folder_path="data/images", question_file="data/question.txt", guidelines_file="data/assessment_guidelines.txt", excel_file="data/essays.xlsx" )