File size: 4,532 Bytes
2581217
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5688e09
2581217
5688e09
2581217
 
 
 
 
c7202d2
2581217
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16f62f4
2581217
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
520b0be
 
 
 
2581217
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import gradio as gr
import cv2
import matplotlib
import numpy as np
import os
from PIL import Image
import spaces
import torch
import tempfile
from gradio_imageslider import ImageSlider
from huggingface_hub import hf_hub_download

from models.PDFNet import build_model
import torch
import cv2
import matplotlib.pyplot as plt
import numpy as np
from tqdm import tqdm
import argparse
from args import get_args_parser
from torchvision.transforms.functional import normalize
import huggingface_hub

from DAM_V2.depth_anything_v2.dpt import DepthAnythingV2

css = """
#img-display-container {
    max-height: 100vh;
}
#img-display-input {
    max-height: 80vh;
}
#img-display-output {
    max-height: 80vh;
}
#download {
    height: 62px;
}
"""
# device = 'cuda' if torch.cuda.is_available() else 'cpu'

device = torch.device('cpu')

parser = argparse.ArgumentParser('PDFNet Testing script', parents=[get_args_parser()])
args = parser.parse_args(args=[])
model,model_name = build_model(args)
model_path = hf_hub_download(repo_id="Tennineee/PDFNet",filename="PDFNet_Best.pth", repo_type="model")
model.load_state_dict(torch.load(model_path,map_location='cpu'),strict=False)
model = model.to(device).eval()

DAMV2_configs = {
   'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384]},
    'vitb': {'encoder': 'vitb', 'features': 128, 'out_channels': [96, 192, 384, 768]},
    'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]},
}
encoder = 'vitb' # or 'vits', 'vitb', 'vitl'
DAMV2 = DepthAnythingV2(**DAMV2_configs[encoder])
filepath = hf_hub_download(repo_id=f"depth-anything/Depth-Anything-V2-{model_name}", filename=f"depth_anything_v2_{encoder}.pth", repo_type="model")
state_dict = torch.load(filepath, map_location="cpu")
DAMV2.load_state_dict(state_dict)
DAMV2 = DAMV2.to(device).eval()

title = "# PDFNet"
description = """Official demo for **PDFNet**, here use DAMV2-small to generate depth map.
Please refer to our [paper](https://arxiv.org/abs/2503.06100) and [github](https://github.com/Tennine2077/PDFNet) for more details."""

class GOSNormalize(object):
    def __init__(self, mean=[0.485,0.456,0.406], std=[0.229,0.224,0.225]):
        self.mean = mean
        self.std = std

    def __call__(self,image):
        image = normalize(image,self.mean,self.std)
        return image

transforms = GOSNormalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])

def predict(image):
    H,W = image.shape[:2]
    depth = DAMV2.infer_image(image)
    image = torch.nn.functional.interpolate(torch.from_numpy(image).permute(2,0,1)[None,...],size=[1024,1024],mode='bilinear',align_corners=True)[0]
    depth = torch.nn.functional.interpolate(torch.from_numpy(depth)[None,None,...],size=[1024,1024],mode='bilinear',align_corners=True)
    image = torch.divide(image,255.0)
    depth = torch.divide(depth,255.0)
    image = transforms(image).unsqueeze(0)
    DIS_map = model.inference(image.to(device),depth.to(device))[0][0][0].cpu()
    DIS_map = cv2.resize(np.array(DIS_map), (W,H))
    # return cv2.resize(np.array(depth[0][0]), (W,H))
    return DIS_map

with gr.Blocks(css=css) as demo:
    gr.Markdown(title)
    gr.Markdown(description)
    gr.Markdown("### Dichotomous Image Segmentation demo")

    with gr.Row():
        input_image = gr.Image(label="Input Image", type='numpy', elem_id='img-display-input')
        dis_image_slider = ImageSlider(label="Pedict View", elem_id='img-display-output', position=0.5)
    submit = gr.Button(value="Compute")
    raw_file = gr.File(label="16-bit raw output (can be considered as disparity)", elem_id="download",)

    def on_submit(image):
        original_image = image.copy()

        DIS_map = predict(image)
        DIS_map = (DIS_map - DIS_map.min()) / (DIS_map.max() - DIS_map.min()) * 255.0
        raw_DIS_map = Image.fromarray(DIS_map.astype('uint16'))
        tmp_raw_DIS_map = tempfile.NamedTemporaryFile(suffix='.png', delete=False)
        raw_DIS_map.save(tmp_raw_DIS_map.name)

        return [[original_image, DIS_map.astype(np.uint8)], tmp_raw_DIS_map.name]

    submit.click(on_submit, inputs=[input_image], outputs=[dis_image_slider, raw_file])

    example_files = os.listdir('assets/examples')
    example_files.sort()
    example_files = [os.path.join('assets/examples', filename) for filename in example_files]
    examples = gr.Examples(examples=example_files, inputs=[input_image], outputs=[dis_image_slider, raw_file], fn=on_submit)

if __name__ == '__main__':
    demo.queue().launch(share=True)