File size: 5,258 Bytes
b6a9b6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.

# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

"""
Sample new images from a pre-trained DiT.
"""
import os
import sys
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))

import argparse
import yaml
import json
import numpy as np
from pathlib import Path
import gin
import importlib
import logging
import cv2
from huggingface_hub import hf_hub_download

logging.basicConfig(
    format="[%(asctime)s.%(msecs)03d] [%(module)s] [%(levelname)s] | %(message)s",
    datefmt="%H:%M:%S",
    level=logging.INFO,
)
logger = logging.getLogger(__name__)

import torch
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
from core.diffusion import create_diffusion
from core.models import DiT_models
from core.utils.train_utils import load_model
from core.utils.math_utils import unnormalize_params
from scripts.prepare_data import generate
from core.utils.dinov2 import Dinov2Model

def main(cfg, generator):
    # Setup PyTorch:
    torch.manual_seed(cfg["seed"])
    torch.set_grad_enabled(False)
    device = "cuda" if torch.cuda.is_available() else "cpu"

    # Load model:
    latent_size = cfg["num_params"]
    model = DiT_models[cfg["model"]](input_size=latent_size).to(device)
    # load a custom DiT checkpoint from train.py:
    # download the checkpoint if not found:
    if not os.path.exists(cfg["ckpt_path"]):
        model_dir, model_name = os.path.dirname(cfg["ckpt_path"]), os.path.basename(cfg["ckpt_path"])
        os.makedirs(model_dir, exist_ok=True)
        checkpoint_path = hf_hub_download(repo_id="TencentARC/DI-PCG", 
                            local_dir=model_dir, filename=model_name)
        print("Downloading checkpoint {} from Hugging Face Hub...".format(model_name))
    print("Loading model from {}".format(cfg["ckpt_path"]))

    
    state_dict = load_model(cfg["ckpt_path"])
    model.load_state_dict(state_dict)
    model.eval()  # important!
    diffusion = create_diffusion(str(cfg["num_sampling_steps"]))
    # feature model
    feature_model = Dinov2Model()

    img_names = sorted(os.listdir(cfg["condition_img_dir"]))
    for name in img_names:
        img_path = os.path.join(cfg["condition_img_dir"], name)
        # Load condition image and extract features
        img = cv2.cvtColor(cv2.imread(img_path), cv2.COLOR_BGR2RGB)
        # pre-process: resize to 256x256
        img = cv2.resize(img, (256, 256))
        img = np.array(img).astype(np.uint8)

        img_feat = feature_model.encode_batch_imgs([img], global_feat=False)
        if len(img_feat.shape) == 2:
            img_feat = img_feat.unsqueeze(1)

        # Create sampling noise:
        z = torch.randn(1, 1, latent_size, device=device)
        y = img_feat

        # No classifier-free guidance:
        model_kwargs = dict(y=y)

        # Sample target params:
        samples = diffusion.p_sample_loop(
            model.forward, z.shape, z, clip_denoised=False, model_kwargs=model_kwargs, progress=True, device=device
        )
        samples = samples[0].squeeze(0).cpu().numpy()

        # unnormalize params
        params_dict = generator.params_dict
        params_original = unnormalize_params(samples, params_dict)

        # save params
        json.dump(params_original, open("{}/{}_params.txt".format(cfg["save_dir"], name), "w"), default=str)

        # generate 3D using sampled params
        asset, _ = generate(generator, params_original, seed=cfg["seed"], save_dir=cfg["save_dir"], save_name=name,
                save_blend=True, save_img=True, save_untexture_img=True, save_gif=False, save_mesh=True, 
                cam_dists=cfg["r_cam_dists"], cam_elevations=cfg["r_cam_elevations"], cam_azimuths=cfg["r_cam_azimuths"], zoff=cfg["r_zoff"], 
                resolution='720x720', sample=200)
        print("Generating model using sampled parameters. Saved in {}".format(cfg["save_dir"]))


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--config", type=str, required=True)
    parser.add_argument("--remove_bg", type=bool, default=False)
    args = parser.parse_args()
    with open(args.config) as f:
        cfg = yaml.load(f, Loader=yaml.FullLoader)
    cfg["remove_bg"] = args.remove_bg
    
    # load the Blender procedural generator
    OBJECTS_PATH = Path(cfg["generator_root"])
    assert OBJECTS_PATH.exists(), OBJECTS_PATH
    generator = None
    for subdir in sorted(list(OBJECTS_PATH.iterdir())):
        clsname = subdir.name.split(".")[0].strip()
        with gin.unlock_config():
            module = importlib.import_module(f"core.assets.{clsname}")
        if hasattr(module, cfg["generator"]):
            generator = getattr(module, cfg["generator"])
            logger.info("Found {} in {}".format(cfg["generator"], subdir))
            break
        logger.debug("{} not found in {}".format(cfg["generator"], subdir))
    if generator is None:
        raise ModuleNotFoundError("{} not Found.".format(cfg["generator"]))
    gen = generator(cfg["seed"])
    # create visualize dir
    os.makedirs(cfg["save_dir"], exist_ok=True)
    main(cfg, gen)