Tejeshwar commited on
Commit
cb0e20d
·
verified ·
1 Parent(s): 21922e9

Upload 2647 files

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +51 -0
  2. yolov12/LICENSE +661 -0
  3. yolov12/README.md +162 -0
  4. yolov12/app.py +165 -0
  5. yolov12/assets/tradeoff.svg +0 -0
  6. yolov12/assets/tradeoff_turbo.svg +0 -0
  7. yolov12/data.yaml +6 -0
  8. yolov12/detect.py +37 -0
  9. yolov12/docker/Dockerfile +92 -0
  10. yolov12/docker/Dockerfile-arm64 +58 -0
  11. yolov12/docker/Dockerfile-conda +50 -0
  12. yolov12/docker/Dockerfile-cpu +62 -0
  13. yolov12/docker/Dockerfile-jetson-jetpack4 +70 -0
  14. yolov12/docker/Dockerfile-jetson-jetpack5 +57 -0
  15. yolov12/docker/Dockerfile-jetson-jetpack6 +58 -0
  16. yolov12/docker/Dockerfile-jupyter +33 -0
  17. yolov12/docker/Dockerfile-python +59 -0
  18. yolov12/docker/Dockerfile-runner +44 -0
  19. yolov12/examples/README.md +40 -0
  20. yolov12/examples/RTDETR-ONNXRuntime-Python/README.md +43 -0
  21. yolov12/examples/RTDETR-ONNXRuntime-Python/main.py +222 -0
  22. yolov12/examples/YOLO-Series-ONNXRuntime-Rust/Cargo.toml +14 -0
  23. yolov12/examples/YOLO-Series-ONNXRuntime-Rust/README.md +94 -0
  24. yolov12/examples/YOLO-Series-ONNXRuntime-Rust/src/main.rs +236 -0
  25. yolov12/examples/YOLOv8-Action-Recognition/action_recognition.py +464 -0
  26. yolov12/examples/YOLOv8-Action-Recognition/readme.md +116 -0
  27. yolov12/examples/YOLOv8-Action-Recognition/requirements.txt +4 -0
  28. yolov12/examples/YOLOv8-CPP-Inference/CMakeLists.txt +28 -0
  29. yolov12/examples/YOLOv8-CPP-Inference/README.md +50 -0
  30. yolov12/examples/YOLOv8-CPP-Inference/inference.cpp +185 -0
  31. yolov12/examples/YOLOv8-CPP-Inference/inference.h +52 -0
  32. yolov12/examples/YOLOv8-CPP-Inference/main.cpp +70 -0
  33. yolov12/examples/YOLOv8-LibTorch-CPP-Inference/CMakeLists.txt +47 -0
  34. yolov12/examples/YOLOv8-LibTorch-CPP-Inference/README.md +35 -0
  35. yolov12/examples/YOLOv8-LibTorch-CPP-Inference/main.cc +260 -0
  36. yolov12/examples/YOLOv8-ONNXRuntime-CPP/CMakeLists.txt +99 -0
  37. yolov12/examples/YOLOv8-ONNXRuntime-CPP/README.md +120 -0
  38. yolov12/examples/YOLOv8-ONNXRuntime-CPP/inference.cpp +375 -0
  39. yolov12/examples/YOLOv8-ONNXRuntime-CPP/inference.h +94 -0
  40. yolov12/examples/YOLOv8-ONNXRuntime-CPP/main.cpp +193 -0
  41. yolov12/examples/YOLOv8-ONNXRuntime-Rust/Cargo.toml +24 -0
  42. yolov12/examples/YOLOv8-ONNXRuntime-Rust/README.md +212 -0
  43. yolov12/examples/YOLOv8-ONNXRuntime-Rust/src/cli.rs +87 -0
  44. yolov12/examples/YOLOv8-ONNXRuntime-Rust/src/lib.rs +160 -0
  45. yolov12/examples/YOLOv8-ONNXRuntime-Rust/src/main.rs +28 -0
  46. yolov12/examples/YOLOv8-ONNXRuntime-Rust/src/model.rs +651 -0
  47. yolov12/examples/YOLOv8-ONNXRuntime-Rust/src/ort_backend.rs +553 -0
  48. yolov12/examples/YOLOv8-ONNXRuntime-Rust/src/yolo_result.rs +235 -0
  49. yolov12/examples/YOLOv8-ONNXRuntime/README.md +43 -0
  50. yolov12/examples/YOLOv8-ONNXRuntime/main.py +229 -0
.gitattributes CHANGED
@@ -34,3 +34,54 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
  flash_attn-2.7.3+cu11torch2.2cxx11abiFALSE-cp311-cp311-linux_x86_64.whl filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
  flash_attn-2.7.3+cu11torch2.2cxx11abiFALSE-cp311-cp311-linux_x86_64.whl filter=lfs diff=lfs merge=lfs -text
37
+ yolov12/flash_attn-2.7.3+cu11torch2.2cxx11abiFALSE-cp311-cp311-linux_x86_64.whl.1 filter=lfs diff=lfs merge=lfs -text
38
+ yolov12/runs/detect/train2/labels_correlogram.jpg filter=lfs diff=lfs merge=lfs -text
39
+ yolov12/runs/detect/train2/labels.jpg filter=lfs diff=lfs merge=lfs -text
40
+ yolov12/runs/detect/train5/confusion_matrix_normalized.png filter=lfs diff=lfs merge=lfs -text
41
+ yolov12/runs/detect/train5/confusion_matrix.png filter=lfs diff=lfs merge=lfs -text
42
+ yolov12/runs/detect/train5/F1_curve.png filter=lfs diff=lfs merge=lfs -text
43
+ yolov12/runs/detect/train5/labels_correlogram.jpg filter=lfs diff=lfs merge=lfs -text
44
+ yolov12/runs/detect/train5/labels.jpg filter=lfs diff=lfs merge=lfs -text
45
+ yolov12/runs/detect/train5/P_curve.png filter=lfs diff=lfs merge=lfs -text
46
+ yolov12/runs/detect/train5/PR_curve.png filter=lfs diff=lfs merge=lfs -text
47
+ yolov12/runs/detect/train5/R_curve.png filter=lfs diff=lfs merge=lfs -text
48
+ yolov12/runs/detect/train5/results.png filter=lfs diff=lfs merge=lfs -text
49
+ yolov12/runs/detect/train5/train_batch0.jpg filter=lfs diff=lfs merge=lfs -text
50
+ yolov12/runs/detect/train5/train_batch1.jpg filter=lfs diff=lfs merge=lfs -text
51
+ yolov12/runs/detect/train5/train_batch2.jpg filter=lfs diff=lfs merge=lfs -text
52
+ yolov12/runs/detect/train5/train_batch90.jpg filter=lfs diff=lfs merge=lfs -text
53
+ yolov12/runs/detect/train5/train_batch91.jpg filter=lfs diff=lfs merge=lfs -text
54
+ yolov12/runs/detect/train5/train_batch92.jpg filter=lfs diff=lfs merge=lfs -text
55
+ yolov12/runs/detect/train5/val_batch0_labels.jpg filter=lfs diff=lfs merge=lfs -text
56
+ yolov12/runs/detect/train5/val_batch0_pred.jpg filter=lfs diff=lfs merge=lfs -text
57
+ yolov12/runs/detect/train5/val_batch1_labels.jpg filter=lfs diff=lfs merge=lfs -text
58
+ yolov12/runs/detect/train5/val_batch1_pred.jpg filter=lfs diff=lfs merge=lfs -text
59
+ yolov12/runs/detect/train6/labels_correlogram.jpg filter=lfs diff=lfs merge=lfs -text
60
+ yolov12/runs/detect/train6/labels.jpg filter=lfs diff=lfs merge=lfs -text
61
+ yolov12/runs/detect/train6/train_batch0.jpg filter=lfs diff=lfs merge=lfs -text
62
+ yolov12/runs/detect/train6/train_batch1.jpg filter=lfs diff=lfs merge=lfs -text
63
+ yolov12/runs/detect/train6/train_batch2.jpg filter=lfs diff=lfs merge=lfs -text
64
+ yolov12/runs/detect/train7/confusion_matrix_normalized.png filter=lfs diff=lfs merge=lfs -text
65
+ yolov12/runs/detect/train7/confusion_matrix.png filter=lfs diff=lfs merge=lfs -text
66
+ yolov12/runs/detect/train7/F1_curve.png filter=lfs diff=lfs merge=lfs -text
67
+ yolov12/runs/detect/train7/labels_correlogram.jpg filter=lfs diff=lfs merge=lfs -text
68
+ yolov12/runs/detect/train7/labels.jpg filter=lfs diff=lfs merge=lfs -text
69
+ yolov12/runs/detect/train7/P_curve.png filter=lfs diff=lfs merge=lfs -text
70
+ yolov12/runs/detect/train7/PR_curve.png filter=lfs diff=lfs merge=lfs -text
71
+ yolov12/runs/detect/train7/R_curve.png filter=lfs diff=lfs merge=lfs -text
72
+ yolov12/runs/detect/train7/results.png filter=lfs diff=lfs merge=lfs -text
73
+ yolov12/runs/detect/train7/train_batch0.jpg filter=lfs diff=lfs merge=lfs -text
74
+ yolov12/runs/detect/train7/train_batch1.jpg filter=lfs diff=lfs merge=lfs -text
75
+ yolov12/runs/detect/train7/train_batch2.jpg filter=lfs diff=lfs merge=lfs -text
76
+ yolov12/runs/detect/train7/train_batch360.jpg filter=lfs diff=lfs merge=lfs -text
77
+ yolov12/runs/detect/train7/train_batch361.jpg filter=lfs diff=lfs merge=lfs -text
78
+ yolov12/runs/detect/train7/train_batch362.jpg filter=lfs diff=lfs merge=lfs -text
79
+ yolov12/runs/detect/train7/val_batch0_labels.jpg filter=lfs diff=lfs merge=lfs -text
80
+ yolov12/runs/detect/train7/val_batch0_pred.jpg filter=lfs diff=lfs merge=lfs -text
81
+ yolov12/runs/detect/train7/val_batch1_labels.jpg filter=lfs diff=lfs merge=lfs -text
82
+ yolov12/runs/detect/train7/val_batch1_pred.jpg filter=lfs diff=lfs merge=lfs -text
83
+ yolov12/runs/detect/train7/val_batch2_labels.jpg filter=lfs diff=lfs merge=lfs -text
84
+ yolov12/runs/detect/train7/val_batch2_pred.jpg filter=lfs diff=lfs merge=lfs -text
85
+ yolov12/ultralytics/assets/bus.jpg filter=lfs diff=lfs merge=lfs -text
86
+ yolov12/ultralytics/data/__pycache__/augment.cpython-311.pyc filter=lfs diff=lfs merge=lfs -text
87
+ yolov12/ultralytics/nn/modules/__pycache__/block.cpython-311.pyc filter=lfs diff=lfs merge=lfs -text
yolov12/LICENSE ADDED
@@ -0,0 +1,661 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ GNU AFFERO GENERAL PUBLIC LICENSE
2
+ Version 3, 19 November 2007
3
+
4
+ Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
5
+ Everyone is permitted to copy and distribute verbatim copies
6
+ of this license document, but changing it is not allowed.
7
+
8
+ Preamble
9
+
10
+ The GNU Affero General Public License is a free, copyleft license for
11
+ software and other kinds of works, specifically designed to ensure
12
+ cooperation with the community in the case of network server software.
13
+
14
+ The licenses for most software and other practical works are designed
15
+ to take away your freedom to share and change the works. By contrast,
16
+ our General Public Licenses are intended to guarantee your freedom to
17
+ share and change all versions of a program--to make sure it remains free
18
+ software for all its users.
19
+
20
+ When we speak of free software, we are referring to freedom, not
21
+ price. Our General Public Licenses are designed to make sure that you
22
+ have the freedom to distribute copies of free software (and charge for
23
+ them if you wish), that you receive source code or can get it if you
24
+ want it, that you can change the software or use pieces of it in new
25
+ free programs, and that you know you can do these things.
26
+
27
+ Developers that use our General Public Licenses protect your rights
28
+ with two steps: (1) assert copyright on the software, and (2) offer
29
+ you this License which gives you legal permission to copy, distribute
30
+ and/or modify the software.
31
+
32
+ A secondary benefit of defending all users' freedom is that
33
+ improvements made in alternate versions of the program, if they
34
+ receive widespread use, become available for other developers to
35
+ incorporate. Many developers of free software are heartened and
36
+ encouraged by the resulting cooperation. However, in the case of
37
+ software used on network servers, this result may fail to come about.
38
+ The GNU General Public License permits making a modified version and
39
+ letting the public access it on a server without ever releasing its
40
+ source code to the public.
41
+
42
+ The GNU Affero General Public License is designed specifically to
43
+ ensure that, in such cases, the modified source code becomes available
44
+ to the community. It requires the operator of a network server to
45
+ provide the source code of the modified version running there to the
46
+ users of that server. Therefore, public use of a modified version, on
47
+ a publicly accessible server, gives the public access to the source
48
+ code of the modified version.
49
+
50
+ An older license, called the Affero General Public License and
51
+ published by Affero, was designed to accomplish similar goals. This is
52
+ a different license, not a version of the Affero GPL, but Affero has
53
+ released a new version of the Affero GPL which permits relicensing under
54
+ this license.
55
+
56
+ The precise terms and conditions for copying, distribution and
57
+ modification follow.
58
+
59
+ TERMS AND CONDITIONS
60
+
61
+ 0. Definitions.
62
+
63
+ "This License" refers to version 3 of the GNU Affero General Public License.
64
+
65
+ "Copyright" also means copyright-like laws that apply to other kinds of
66
+ works, such as semiconductor masks.
67
+
68
+ "The Program" refers to any copyrightable work licensed under this
69
+ License. Each licensee is addressed as "you". "Licensees" and
70
+ "recipients" may be individuals or organizations.
71
+
72
+ To "modify" a work means to copy from or adapt all or part of the work
73
+ in a fashion requiring copyright permission, other than the making of an
74
+ exact copy. The resulting work is called a "modified version" of the
75
+ earlier work or a work "based on" the earlier work.
76
+
77
+ A "covered work" means either the unmodified Program or a work based
78
+ on the Program.
79
+
80
+ To "propagate" a work means to do anything with it that, without
81
+ permission, would make you directly or secondarily liable for
82
+ infringement under applicable copyright law, except executing it on a
83
+ computer or modifying a private copy. Propagation includes copying,
84
+ distribution (with or without modification), making available to the
85
+ public, and in some countries other activities as well.
86
+
87
+ To "convey" a work means any kind of propagation that enables other
88
+ parties to make or receive copies. Mere interaction with a user through
89
+ a computer network, with no transfer of a copy, is not conveying.
90
+
91
+ An interactive user interface displays "Appropriate Legal Notices"
92
+ to the extent that it includes a convenient and prominently visible
93
+ feature that (1) displays an appropriate copyright notice, and (2)
94
+ tells the user that there is no warranty for the work (except to the
95
+ extent that warranties are provided), that licensees may convey the
96
+ work under this License, and how to view a copy of this License. If
97
+ the interface presents a list of user commands or options, such as a
98
+ menu, a prominent item in the list meets this criterion.
99
+
100
+ 1. Source Code.
101
+
102
+ The "source code" for a work means the preferred form of the work
103
+ for making modifications to it. "Object code" means any non-source
104
+ form of a work.
105
+
106
+ A "Standard Interface" means an interface that either is an official
107
+ standard defined by a recognized standards body, or, in the case of
108
+ interfaces specified for a particular programming language, one that
109
+ is widely used among developers working in that language.
110
+
111
+ The "System Libraries" of an executable work include anything, other
112
+ than the work as a whole, that (a) is included in the normal form of
113
+ packaging a Major Component, but which is not part of that Major
114
+ Component, and (b) serves only to enable use of the work with that
115
+ Major Component, or to implement a Standard Interface for which an
116
+ implementation is available to the public in source code form. A
117
+ "Major Component", in this context, means a major essential component
118
+ (kernel, window system, and so on) of the specific operating system
119
+ (if any) on which the executable work runs, or a compiler used to
120
+ produce the work, or an object code interpreter used to run it.
121
+
122
+ The "Corresponding Source" for a work in object code form means all
123
+ the source code needed to generate, install, and (for an executable
124
+ work) run the object code and to modify the work, including scripts to
125
+ control those activities. However, it does not include the work's
126
+ System Libraries, or general-purpose tools or generally available free
127
+ programs which are used unmodified in performing those activities but
128
+ which are not part of the work. For example, Corresponding Source
129
+ includes interface definition files associated with source files for
130
+ the work, and the source code for shared libraries and dynamically
131
+ linked subprograms that the work is specifically designed to require,
132
+ such as by intimate data communication or control flow between those
133
+ subprograms and other parts of the work.
134
+
135
+ The Corresponding Source need not include anything that users
136
+ can regenerate automatically from other parts of the Corresponding
137
+ Source.
138
+
139
+ The Corresponding Source for a work in source code form is that
140
+ same work.
141
+
142
+ 2. Basic Permissions.
143
+
144
+ All rights granted under this License are granted for the term of
145
+ copyright on the Program, and are irrevocable provided the stated
146
+ conditions are met. This License explicitly affirms your unlimited
147
+ permission to run the unmodified Program. The output from running a
148
+ covered work is covered by this License only if the output, given its
149
+ content, constitutes a covered work. This License acknowledges your
150
+ rights of fair use or other equivalent, as provided by copyright law.
151
+
152
+ You may make, run and propagate covered works that you do not
153
+ convey, without conditions so long as your license otherwise remains
154
+ in force. You may convey covered works to others for the sole purpose
155
+ of having them make modifications exclusively for you, or provide you
156
+ with facilities for running those works, provided that you comply with
157
+ the terms of this License in conveying all material for which you do
158
+ not control copyright. Those thus making or running the covered works
159
+ for you must do so exclusively on your behalf, under your direction
160
+ and control, on terms that prohibit them from making any copies of
161
+ your copyrighted material outside their relationship with you.
162
+
163
+ Conveying under any other circumstances is permitted solely under
164
+ the conditions stated below. Sublicensing is not allowed; section 10
165
+ makes it unnecessary.
166
+
167
+ 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
168
+
169
+ No covered work shall be deemed part of an effective technological
170
+ measure under any applicable law fulfilling obligations under article
171
+ 11 of the WIPO copyright treaty adopted on 20 December 1996, or
172
+ similar laws prohibiting or restricting circumvention of such
173
+ measures.
174
+
175
+ When you convey a covered work, you waive any legal power to forbid
176
+ circumvention of technological measures to the extent such circumvention
177
+ is effected by exercising rights under this License with respect to
178
+ the covered work, and you disclaim any intention to limit operation or
179
+ modification of the work as a means of enforcing, against the work's
180
+ users, your or third parties' legal rights to forbid circumvention of
181
+ technological measures.
182
+
183
+ 4. Conveying Verbatim Copies.
184
+
185
+ You may convey verbatim copies of the Program's source code as you
186
+ receive it, in any medium, provided that you conspicuously and
187
+ appropriately publish on each copy an appropriate copyright notice;
188
+ keep intact all notices stating that this License and any
189
+ non-permissive terms added in accord with section 7 apply to the code;
190
+ keep intact all notices of the absence of any warranty; and give all
191
+ recipients a copy of this License along with the Program.
192
+
193
+ You may charge any price or no price for each copy that you convey,
194
+ and you may offer support or warranty protection for a fee.
195
+
196
+ 5. Conveying Modified Source Versions.
197
+
198
+ You may convey a work based on the Program, or the modifications to
199
+ produce it from the Program, in the form of source code under the
200
+ terms of section 4, provided that you also meet all of these conditions:
201
+
202
+ a) The work must carry prominent notices stating that you modified
203
+ it, and giving a relevant date.
204
+
205
+ b) The work must carry prominent notices stating that it is
206
+ released under this License and any conditions added under section
207
+ 7. This requirement modifies the requirement in section 4 to
208
+ "keep intact all notices".
209
+
210
+ c) You must license the entire work, as a whole, under this
211
+ License to anyone who comes into possession of a copy. This
212
+ License will therefore apply, along with any applicable section 7
213
+ additional terms, to the whole of the work, and all its parts,
214
+ regardless of how they are packaged. This License gives no
215
+ permission to license the work in any other way, but it does not
216
+ invalidate such permission if you have separately received it.
217
+
218
+ d) If the work has interactive user interfaces, each must display
219
+ Appropriate Legal Notices; however, if the Program has interactive
220
+ interfaces that do not display Appropriate Legal Notices, your
221
+ work need not make them do so.
222
+
223
+ A compilation of a covered work with other separate and independent
224
+ works, which are not by their nature extensions of the covered work,
225
+ and which are not combined with it such as to form a larger program,
226
+ in or on a volume of a storage or distribution medium, is called an
227
+ "aggregate" if the compilation and its resulting copyright are not
228
+ used to limit the access or legal rights of the compilation's users
229
+ beyond what the individual works permit. Inclusion of a covered work
230
+ in an aggregate does not cause this License to apply to the other
231
+ parts of the aggregate.
232
+
233
+ 6. Conveying Non-Source Forms.
234
+
235
+ You may convey a covered work in object code form under the terms
236
+ of sections 4 and 5, provided that you also convey the
237
+ machine-readable Corresponding Source under the terms of this License,
238
+ in one of these ways:
239
+
240
+ a) Convey the object code in, or embodied in, a physical product
241
+ (including a physical distribution medium), accompanied by the
242
+ Corresponding Source fixed on a durable physical medium
243
+ customarily used for software interchange.
244
+
245
+ b) Convey the object code in, or embodied in, a physical product
246
+ (including a physical distribution medium), accompanied by a
247
+ written offer, valid for at least three years and valid for as
248
+ long as you offer spare parts or customer support for that product
249
+ model, to give anyone who possesses the object code either (1) a
250
+ copy of the Corresponding Source for all the software in the
251
+ product that is covered by this License, on a durable physical
252
+ medium customarily used for software interchange, for a price no
253
+ more than your reasonable cost of physically performing this
254
+ conveying of source, or (2) access to copy the
255
+ Corresponding Source from a network server at no charge.
256
+
257
+ c) Convey individual copies of the object code with a copy of the
258
+ written offer to provide the Corresponding Source. This
259
+ alternative is allowed only occasionally and noncommercially, and
260
+ only if you received the object code with such an offer, in accord
261
+ with subsection 6b.
262
+
263
+ d) Convey the object code by offering access from a designated
264
+ place (gratis or for a charge), and offer equivalent access to the
265
+ Corresponding Source in the same way through the same place at no
266
+ further charge. You need not require recipients to copy the
267
+ Corresponding Source along with the object code. If the place to
268
+ copy the object code is a network server, the Corresponding Source
269
+ may be on a different server (operated by you or a third party)
270
+ that supports equivalent copying facilities, provided you maintain
271
+ clear directions next to the object code saying where to find the
272
+ Corresponding Source. Regardless of what server hosts the
273
+ Corresponding Source, you remain obligated to ensure that it is
274
+ available for as long as needed to satisfy these requirements.
275
+
276
+ e) Convey the object code using peer-to-peer transmission, provided
277
+ you inform other peers where the object code and Corresponding
278
+ Source of the work are being offered to the general public at no
279
+ charge under subsection 6d.
280
+
281
+ A separable portion of the object code, whose source code is excluded
282
+ from the Corresponding Source as a System Library, need not be
283
+ included in conveying the object code work.
284
+
285
+ A "User Product" is either (1) a "consumer product", which means any
286
+ tangible personal property which is normally used for personal, family,
287
+ or household purposes, or (2) anything designed or sold for incorporation
288
+ into a dwelling. In determining whether a product is a consumer product,
289
+ doubtful cases shall be resolved in favor of coverage. For a particular
290
+ product received by a particular user, "normally used" refers to a
291
+ typical or common use of that class of product, regardless of the status
292
+ of the particular user or of the way in which the particular user
293
+ actually uses, or expects or is expected to use, the product. A product
294
+ is a consumer product regardless of whether the product has substantial
295
+ commercial, industrial or non-consumer uses, unless such uses represent
296
+ the only significant mode of use of the product.
297
+
298
+ "Installation Information" for a User Product means any methods,
299
+ procedures, authorization keys, or other information required to install
300
+ and execute modified versions of a covered work in that User Product from
301
+ a modified version of its Corresponding Source. The information must
302
+ suffice to ensure that the continued functioning of the modified object
303
+ code is in no case prevented or interfered with solely because
304
+ modification has been made.
305
+
306
+ If you convey an object code work under this section in, or with, or
307
+ specifically for use in, a User Product, and the conveying occurs as
308
+ part of a transaction in which the right of possession and use of the
309
+ User Product is transferred to the recipient in perpetuity or for a
310
+ fixed term (regardless of how the transaction is characterized), the
311
+ Corresponding Source conveyed under this section must be accompanied
312
+ by the Installation Information. But this requirement does not apply
313
+ if neither you nor any third party retains the ability to install
314
+ modified object code on the User Product (for example, the work has
315
+ been installed in ROM).
316
+
317
+ The requirement to provide Installation Information does not include a
318
+ requirement to continue to provide support service, warranty, or updates
319
+ for a work that has been modified or installed by the recipient, or for
320
+ the User Product in which it has been modified or installed. Access to a
321
+ network may be denied when the modification itself materially and
322
+ adversely affects the operation of the network or violates the rules and
323
+ protocols for communication across the network.
324
+
325
+ Corresponding Source conveyed, and Installation Information provided,
326
+ in accord with this section must be in a format that is publicly
327
+ documented (and with an implementation available to the public in
328
+ source code form), and must require no special password or key for
329
+ unpacking, reading or copying.
330
+
331
+ 7. Additional Terms.
332
+
333
+ "Additional permissions" are terms that supplement the terms of this
334
+ License by making exceptions from one or more of its conditions.
335
+ Additional permissions that are applicable to the entire Program shall
336
+ be treated as though they were included in this License, to the extent
337
+ that they are valid under applicable law. If additional permissions
338
+ apply only to part of the Program, that part may be used separately
339
+ under those permissions, but the entire Program remains governed by
340
+ this License without regard to the additional permissions.
341
+
342
+ When you convey a copy of a covered work, you may at your option
343
+ remove any additional permissions from that copy, or from any part of
344
+ it. (Additional permissions may be written to require their own
345
+ removal in certain cases when you modify the work.) You may place
346
+ additional permissions on material, added by you to a covered work,
347
+ for which you have or can give appropriate copyright permission.
348
+
349
+ Notwithstanding any other provision of this License, for material you
350
+ add to a covered work, you may (if authorized by the copyright holders of
351
+ that material) supplement the terms of this License with terms:
352
+
353
+ a) Disclaiming warranty or limiting liability differently from the
354
+ terms of sections 15 and 16 of this License; or
355
+
356
+ b) Requiring preservation of specified reasonable legal notices or
357
+ author attributions in that material or in the Appropriate Legal
358
+ Notices displayed by works containing it; or
359
+
360
+ c) Prohibiting misrepresentation of the origin of that material, or
361
+ requiring that modified versions of such material be marked in
362
+ reasonable ways as different from the original version; or
363
+
364
+ d) Limiting the use for publicity purposes of names of licensors or
365
+ authors of the material; or
366
+
367
+ e) Declining to grant rights under trademark law for use of some
368
+ trade names, trademarks, or service marks; or
369
+
370
+ f) Requiring indemnification of licensors and authors of that
371
+ material by anyone who conveys the material (or modified versions of
372
+ it) with contractual assumptions of liability to the recipient, for
373
+ any liability that these contractual assumptions directly impose on
374
+ those licensors and authors.
375
+
376
+ All other non-permissive additional terms are considered "further
377
+ restrictions" within the meaning of section 10. If the Program as you
378
+ received it, or any part of it, contains a notice stating that it is
379
+ governed by this License along with a term that is a further
380
+ restriction, you may remove that term. If a license document contains
381
+ a further restriction but permits relicensing or conveying under this
382
+ License, you may add to a covered work material governed by the terms
383
+ of that license document, provided that the further restriction does
384
+ not survive such relicensing or conveying.
385
+
386
+ If you add terms to a covered work in accord with this section, you
387
+ must place, in the relevant source files, a statement of the
388
+ additional terms that apply to those files, or a notice indicating
389
+ where to find the applicable terms.
390
+
391
+ Additional terms, permissive or non-permissive, may be stated in the
392
+ form of a separately written license, or stated as exceptions;
393
+ the above requirements apply either way.
394
+
395
+ 8. Termination.
396
+
397
+ You may not propagate or modify a covered work except as expressly
398
+ provided under this License. Any attempt otherwise to propagate or
399
+ modify it is void, and will automatically terminate your rights under
400
+ this License (including any patent licenses granted under the third
401
+ paragraph of section 11).
402
+
403
+ However, if you cease all violation of this License, then your
404
+ license from a particular copyright holder is reinstated (a)
405
+ provisionally, unless and until the copyright holder explicitly and
406
+ finally terminates your license, and (b) permanently, if the copyright
407
+ holder fails to notify you of the violation by some reasonable means
408
+ prior to 60 days after the cessation.
409
+
410
+ Moreover, your license from a particular copyright holder is
411
+ reinstated permanently if the copyright holder notifies you of the
412
+ violation by some reasonable means, this is the first time you have
413
+ received notice of violation of this License (for any work) from that
414
+ copyright holder, and you cure the violation prior to 30 days after
415
+ your receipt of the notice.
416
+
417
+ Termination of your rights under this section does not terminate the
418
+ licenses of parties who have received copies or rights from you under
419
+ this License. If your rights have been terminated and not permanently
420
+ reinstated, you do not qualify to receive new licenses for the same
421
+ material under section 10.
422
+
423
+ 9. Acceptance Not Required for Having Copies.
424
+
425
+ You are not required to accept this License in order to receive or
426
+ run a copy of the Program. Ancillary propagation of a covered work
427
+ occurring solely as a consequence of using peer-to-peer transmission
428
+ to receive a copy likewise does not require acceptance. However,
429
+ nothing other than this License grants you permission to propagate or
430
+ modify any covered work. These actions infringe copyright if you do
431
+ not accept this License. Therefore, by modifying or propagating a
432
+ covered work, you indicate your acceptance of this License to do so.
433
+
434
+ 10. Automatic Licensing of Downstream Recipients.
435
+
436
+ Each time you convey a covered work, the recipient automatically
437
+ receives a license from the original licensors, to run, modify and
438
+ propagate that work, subject to this License. You are not responsible
439
+ for enforcing compliance by third parties with this License.
440
+
441
+ An "entity transaction" is a transaction transferring control of an
442
+ organization, or substantially all assets of one, or subdividing an
443
+ organization, or merging organizations. If propagation of a covered
444
+ work results from an entity transaction, each party to that
445
+ transaction who receives a copy of the work also receives whatever
446
+ licenses to the work the party's predecessor in interest had or could
447
+ give under the previous paragraph, plus a right to possession of the
448
+ Corresponding Source of the work from the predecessor in interest, if
449
+ the predecessor has it or can get it with reasonable efforts.
450
+
451
+ You may not impose any further restrictions on the exercise of the
452
+ rights granted or affirmed under this License. For example, you may
453
+ not impose a license fee, royalty, or other charge for exercise of
454
+ rights granted under this License, and you may not initiate litigation
455
+ (including a cross-claim or counterclaim in a lawsuit) alleging that
456
+ any patent claim is infringed by making, using, selling, offering for
457
+ sale, or importing the Program or any portion of it.
458
+
459
+ 11. Patents.
460
+
461
+ A "contributor" is a copyright holder who authorizes use under this
462
+ License of the Program or a work on which the Program is based. The
463
+ work thus licensed is called the contributor's "contributor version".
464
+
465
+ A contributor's "essential patent claims" are all patent claims
466
+ owned or controlled by the contributor, whether already acquired or
467
+ hereafter acquired, that would be infringed by some manner, permitted
468
+ by this License, of making, using, or selling its contributor version,
469
+ but do not include claims that would be infringed only as a
470
+ consequence of further modification of the contributor version. For
471
+ purposes of this definition, "control" includes the right to grant
472
+ patent sublicenses in a manner consistent with the requirements of
473
+ this License.
474
+
475
+ Each contributor grants you a non-exclusive, worldwide, royalty-free
476
+ patent license under the contributor's essential patent claims, to
477
+ make, use, sell, offer for sale, import and otherwise run, modify and
478
+ propagate the contents of its contributor version.
479
+
480
+ In the following three paragraphs, a "patent license" is any express
481
+ agreement or commitment, however denominated, not to enforce a patent
482
+ (such as an express permission to practice a patent or covenant not to
483
+ sue for patent infringement). To "grant" such a patent license to a
484
+ party means to make such an agreement or commitment not to enforce a
485
+ patent against the party.
486
+
487
+ If you convey a covered work, knowingly relying on a patent license,
488
+ and the Corresponding Source of the work is not available for anyone
489
+ to copy, free of charge and under the terms of this License, through a
490
+ publicly available network server or other readily accessible means,
491
+ then you must either (1) cause the Corresponding Source to be so
492
+ available, or (2) arrange to deprive yourself of the benefit of the
493
+ patent license for this particular work, or (3) arrange, in a manner
494
+ consistent with the requirements of this License, to extend the patent
495
+ license to downstream recipients. "Knowingly relying" means you have
496
+ actual knowledge that, but for the patent license, your conveying the
497
+ covered work in a country, or your recipient's use of the covered work
498
+ in a country, would infringe one or more identifiable patents in that
499
+ country that you have reason to believe are valid.
500
+
501
+ If, pursuant to or in connection with a single transaction or
502
+ arrangement, you convey, or propagate by procuring conveyance of, a
503
+ covered work, and grant a patent license to some of the parties
504
+ receiving the covered work authorizing them to use, propagate, modify
505
+ or convey a specific copy of the covered work, then the patent license
506
+ you grant is automatically extended to all recipients of the covered
507
+ work and works based on it.
508
+
509
+ A patent license is "discriminatory" if it does not include within
510
+ the scope of its coverage, prohibits the exercise of, or is
511
+ conditioned on the non-exercise of one or more of the rights that are
512
+ specifically granted under this License. You may not convey a covered
513
+ work if you are a party to an arrangement with a third party that is
514
+ in the business of distributing software, under which you make payment
515
+ to the third party based on the extent of your activity of conveying
516
+ the work, and under which the third party grants, to any of the
517
+ parties who would receive the covered work from you, a discriminatory
518
+ patent license (a) in connection with copies of the covered work
519
+ conveyed by you (or copies made from those copies), or (b) primarily
520
+ for and in connection with specific products or compilations that
521
+ contain the covered work, unless you entered into that arrangement,
522
+ or that patent license was granted, prior to 28 March 2007.
523
+
524
+ Nothing in this License shall be construed as excluding or limiting
525
+ any implied license or other defenses to infringement that may
526
+ otherwise be available to you under applicable patent law.
527
+
528
+ 12. No Surrender of Others' Freedom.
529
+
530
+ If conditions are imposed on you (whether by court order, agreement or
531
+ otherwise) that contradict the conditions of this License, they do not
532
+ excuse you from the conditions of this License. If you cannot convey a
533
+ covered work so as to satisfy simultaneously your obligations under this
534
+ License and any other pertinent obligations, then as a consequence you may
535
+ not convey it at all. For example, if you agree to terms that obligate you
536
+ to collect a royalty for further conveying from those to whom you convey
537
+ the Program, the only way you could satisfy both those terms and this
538
+ License would be to refrain entirely from conveying the Program.
539
+
540
+ 13. Remote Network Interaction; Use with the GNU General Public License.
541
+
542
+ Notwithstanding any other provision of this License, if you modify the
543
+ Program, your modified version must prominently offer all users
544
+ interacting with it remotely through a computer network (if your version
545
+ supports such interaction) an opportunity to receive the Corresponding
546
+ Source of your version by providing access to the Corresponding Source
547
+ from a network server at no charge, through some standard or customary
548
+ means of facilitating copying of software. This Corresponding Source
549
+ shall include the Corresponding Source for any work covered by version 3
550
+ of the GNU General Public License that is incorporated pursuant to the
551
+ following paragraph.
552
+
553
+ Notwithstanding any other provision of this License, you have
554
+ permission to link or combine any covered work with a work licensed
555
+ under version 3 of the GNU General Public License into a single
556
+ combined work, and to convey the resulting work. The terms of this
557
+ License will continue to apply to the part which is the covered work,
558
+ but the work with which it is combined will remain governed by version
559
+ 3 of the GNU General Public License.
560
+
561
+ 14. Revised Versions of this License.
562
+
563
+ The Free Software Foundation may publish revised and/or new versions of
564
+ the GNU Affero General Public License from time to time. Such new versions
565
+ will be similar in spirit to the present version, but may differ in detail to
566
+ address new problems or concerns.
567
+
568
+ Each version is given a distinguishing version number. If the
569
+ Program specifies that a certain numbered version of the GNU Affero General
570
+ Public License "or any later version" applies to it, you have the
571
+ option of following the terms and conditions either of that numbered
572
+ version or of any later version published by the Free Software
573
+ Foundation. If the Program does not specify a version number of the
574
+ GNU Affero General Public License, you may choose any version ever published
575
+ by the Free Software Foundation.
576
+
577
+ If the Program specifies that a proxy can decide which future
578
+ versions of the GNU Affero General Public License can be used, that proxy's
579
+ public statement of acceptance of a version permanently authorizes you
580
+ to choose that version for the Program.
581
+
582
+ Later license versions may give you additional or different
583
+ permissions. However, no additional obligations are imposed on any
584
+ author or copyright holder as a result of your choosing to follow a
585
+ later version.
586
+
587
+ 15. Disclaimer of Warranty.
588
+
589
+ THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
590
+ APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
591
+ HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
592
+ OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
593
+ THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
594
+ PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
595
+ IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
596
+ ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
597
+
598
+ 16. Limitation of Liability.
599
+
600
+ IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
601
+ WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
602
+ THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
603
+ GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
604
+ USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
605
+ DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
606
+ PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
607
+ EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
608
+ SUCH DAMAGES.
609
+
610
+ 17. Interpretation of Sections 15 and 16.
611
+
612
+ If the disclaimer of warranty and limitation of liability provided
613
+ above cannot be given local legal effect according to their terms,
614
+ reviewing courts shall apply local law that most closely approximates
615
+ an absolute waiver of all civil liability in connection with the
616
+ Program, unless a warranty or assumption of liability accompanies a
617
+ copy of the Program in return for a fee.
618
+
619
+ END OF TERMS AND CONDITIONS
620
+
621
+ How to Apply These Terms to Your New Programs
622
+
623
+ If you develop a new program, and you want it to be of the greatest
624
+ possible use to the public, the best way to achieve this is to make it
625
+ free software which everyone can redistribute and change under these terms.
626
+
627
+ To do so, attach the following notices to the program. It is safest
628
+ to attach them to the start of each source file to most effectively
629
+ state the exclusion of warranty; and each file should have at least
630
+ the "copyright" line and a pointer to where the full notice is found.
631
+
632
+ <one line to give the program's name and a brief idea of what it does.>
633
+ Copyright (C) <year> <name of author>
634
+
635
+ This program is free software: you can redistribute it and/or modify
636
+ it under the terms of the GNU Affero General Public License as published
637
+ by the Free Software Foundation, either version 3 of the License, or
638
+ (at your option) any later version.
639
+
640
+ This program is distributed in the hope that it will be useful,
641
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
642
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
643
+ GNU Affero General Public License for more details.
644
+
645
+ You should have received a copy of the GNU Affero General Public License
646
+ along with this program. If not, see <https://www.gnu.org/licenses/>.
647
+
648
+ Also add information on how to contact you by electronic and paper mail.
649
+
650
+ If your software can interact with users remotely through a computer
651
+ network, you should also make sure that it provides a way for users to
652
+ get its source. For example, if your program is a web application, its
653
+ interface could display a "Source" link that leads users to an archive
654
+ of the code. There are many ways you could offer source, and different
655
+ solutions will be better for different programs; see section 13 for the
656
+ specific requirements.
657
+
658
+ You should also get your employer (if you work as a programmer) or school,
659
+ if any, to sign a "copyright disclaimer" for the program, if necessary.
660
+ For more information on this, and how to apply and follow the GNU AGPL, see
661
+ <https://www.gnu.org/licenses/>.
yolov12/README.md ADDED
@@ -0,0 +1,162 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+
3
+ <div align="center">
4
+ <h1>YOLOv12</h1>
5
+ <h3>YOLOv12: Attention-Centric Real-Time Object Detectors</h3>
6
+
7
+ [Yunjie Tian](https://sunsmarterjie.github.io/)<sup>1</sup>, [Qixiang Ye](https://people.ucas.ac.cn/~qxye?language=en)<sup>2</sup>, [David Doermann](https://cse.buffalo.edu/~doermann/)<sup>1</sup>
8
+
9
+ <sup>1</sup> University at Buffalo, SUNY, <sup>2</sup> University of Chinese Academy of Sciences.
10
+
11
+
12
+ <p align="center">
13
+ <img src="assets/tradeoff_turbo.svg" width=90%> <br>
14
+ Comparison with popular methods in terms of latency-accuracy (left) and FLOPs-accuracy (right) trade-offs
15
+ </p>
16
+
17
+ </div>
18
+
19
+ [![arXiv](https://img.shields.io/badge/arXiv-2502.12524-b31b1b.svg)](https://arxiv.org/abs/2502.12524) [![Hugging Face Demo](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/sunsmarterjieleaf/yolov12) <a href="https://colab.research.google.com/github/roboflow-ai/notebooks/blob/main/notebooks/train-yolov12-object-detection-model.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> [![Kaggle Notebook](https://img.shields.io/badge/Kaggle-Notebook-blue?logo=kaggle)](https://www.kaggle.com/code/jxxn03x/yolov12-on-custom-data) [![deploy](https://media.roboflow.com/deploy.svg)](https://blog.roboflow.com/use-yolov12-with-roboflow/#deploy-yolov12-models-with-roboflow) [![Openbayes](https://img.shields.io/static/v1?label=Demo&message=OpenBayes%E8%B4%9D%E5%BC%8F%E8%AE%A1%E7%AE%97&color=green)](https://openbayes.com/console/public/tutorials/A4ac4xNrUCQ)
20
+
21
+ ## Updates
22
+
23
+ - 2025/03/18: Some guys are interested in the heatmap. See this [issue](https://github.com/sunsmarterjie/yolov12/issues/74).
24
+
25
+ - 2025/03/09: **YOLOv12-turbo** is released: a faster YOLOv12 version.
26
+
27
+ - 2025/02/24: Blogs: [ultralytics](https://docs.ultralytics.com/models/yolo12/), [LearnOpenCV](https://learnopencv.com/yolov12/). Thanks to them!
28
+
29
+ - 2025/02/22: [YOLOv12 TensorRT CPP Inference Repo + Google Colab Notebook](https://github.com/mohamedsamirx/YOLOv12-TensorRT-CPP).
30
+
31
+ - 2025/02/22: [Android deploy](https://github.com/mpj1234/ncnn-yolov12-android/tree/main) / [TensorRT-YOLO](https://github.com/laugh12321/TensorRT-YOLO) accelerates yolo12. Thanks to them!
32
+
33
+ - 2025/02/21: Try yolo12 for classification, oriented bounding boxes, pose estimation, and instance segmentation at [ultralytics](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/cfg/models/12). Please pay attention to this [issue](https://github.com/sunsmarterjie/yolov12/issues/29). Thanks to them!
34
+
35
+ - 2025/02/20: [Any computer or edge device?](https://github.com/roboflow/inference) / [ONNX CPP Version](https://github.com/mohamedsamirx/YOLOv12-ONNX-CPP). Thanks to them!
36
+
37
+ - 2025/02/20: Train a yolov12 model on a custom dataset: [Blog](https://blog.roboflow.com/train-yolov12-model/) and [Youtube](https://www.youtube.com/watch?v=fksJmIMIfXo). / [Step-by-step instruction](https://youtu.be/dO8k5rgXG0M). Thanks to them!
38
+
39
+ - 2025/02/19: [arXiv version](https://arxiv.org/abs/2502.12524) is public. [Demo](https://huggingface.co/spaces/sunsmarterjieleaf/yolov12) is available (try [Demo2](https://huggingface.co/spaces/sunsmarterjieleaf/yolov12_demo2) [Demo3](https://huggingface.co/spaces/sunsmarterjieleaf/yolov12_demo3) if busy).
40
+
41
+
42
+ <details>
43
+ <summary>
44
+ <font size="+1">Abstract</font>
45
+ </summary>
46
+ Enhancing the network architecture of the YOLO framework has been crucial for a long time but has focused on CNN-based improvements despite the proven superiority of attention mechanisms in modeling capabilities. This is because attention-based models cannot match the speed of CNN-based models. This paper proposes an attention-centric YOLO framework, namely YOLOv12, that matches the speed of previous CNN-based ones while harnessing the performance benefits of attention mechanisms.
47
+
48
+ YOLOv12 surpasses all popular real-time object detectors in accuracy with competitive speed. For example, YOLOv12-N achieves 40.6% mAP with an inference latency of 1.64 ms on a T4 GPU, outperforming advanced YOLOv10-N / YOLOv11-N by 2.1%/1.2% mAP with a comparable speed. This advantage extends to other model scales. YOLOv12 also surpasses end-to-end real-time detectors that improve DETR, such as RT-DETR / RT-DETRv2: YOLOv12-S beats RT-DETR-R18 / RT-DETRv2-R18 while running 42% faster, using only 36% of the computation and 45% of the parameters.
49
+ </details>
50
+
51
+
52
+ ## Main Results
53
+
54
+ **Turbo (default version)**:
55
+ | Model | size<br><sup>(pixels) | mAP<sup>val<br>50-95 | Speed<br><sup>T4 TensorRT10<br> | params<br><sup>(M) | FLOPs<br><sup>(G) |
56
+ | :----------------------------------------------------------------------------------- | :-------------------: | :-------------------:| :------------------------------:| :-----------------:| :---------------:|
57
+ | [YOLO12n](https://github.com/sunsmarterjie/yolov12/releases/download/turbo/yolov12n.pt) | 640 | 40.4 | 1.60 | 2.5 | 6.0 |
58
+ | [YOLO12s](https://github.com/sunsmarterjie/yolov12/releases/download/turbo/yolov12s.pt) | 640 | 47.6 | 2.42 | 9.1 | 19.4 |
59
+ | [YOLO12m](https://github.com/sunsmarterjie/yolov12/releases/download/turbo/yolov12m.pt) | 640 | 52.5 | 4.27 | 19.6 | 59.8 |
60
+ | [YOLO12l](https://github.com/sunsmarterjie/yolov12/releases/download/turbo/yolov12l.pt) | 640 | 53.8 | 5.83 | 26.5 | 82.4 |
61
+ | [YOLO12x](https://github.com/sunsmarterjie/yolov12/releases/download/turbo/yolov12x.pt) | 640 | 55.4 | 10.38 | 59.3 | 184.6 |
62
+
63
+ [**v1.0**](https://github.com/sunsmarterjie/yolov12/tree/V1.0):
64
+ | Model | size<br><sup>(pixels) | mAP<sup>val<br>50-95 | Speed<br><sup>T4 TensorRT10<br> | params<br><sup>(M) | FLOPs<br><sup>(G) |
65
+ | :----------------------------------------------------------------------------------- | :-------------------: | :-------------------:| :------------------------------:| :-----------------:| :---------------:|
66
+ | [YOLO12n](https://github.com/sunsmarterjie/yolov12/releases/download/v1.0/yolov12n.pt) | 640 | 40.6 | 1.64 | 2.6 | 6.5 |
67
+ | [YOLO12s](https://github.com/sunsmarterjie/yolov12/releases/download/v1.0/yolov12s.pt) | 640 | 48.0 | 2.61 | 9.3 | 21.4 |
68
+ | [YOLO12m](https://github.com/sunsmarterjie/yolov12/releases/download/v1.0/yolov12m.pt) | 640 | 52.5 | 4.86 | 20.2 | 67.5 |
69
+ | [YOLO12l](https://github.com/sunsmarterjie/yolov12/releases/download/v1.0/yolov12l.pt) | 640 | 53.7 | 6.77 | 26.4 | 88.9 |
70
+ | [YOLO12x](https://github.com/sunsmarterjie/yolov12/releases/download/v1.0/yolov12x.pt) | 640 | 55.2 | 11.79 | 59.1 | 199.0 |
71
+
72
+ ## Installation
73
+ ```
74
+ wget https://github.com/Dao-AILab/flash-attention/releases/download/v2.7.3/flash_attn-2.7.3+cu11torch2.2cxx11abiFALSE-cp311-cp311-linux_x86_64.whl
75
+ conda create -n yolov12 python=3.11
76
+ conda activate yolov12
77
+ pip install -r requirements.txt
78
+ pip install -e .
79
+ ```
80
+
81
+ ## Validation
82
+ [`yolov12n`](https://github.com/sunsmarterjie/yolov12/releases/download/turbo/yolov12n.pt)
83
+ [`yolov12s`](https://github.com/sunsmarterjie/yolov12/releases/download/turbo/yolov12s.pt)
84
+ [`yolov12m`](https://github.com/sunsmarterjie/yolov12/releases/download/turbo/yolov12m.pt)
85
+ [`yolov12l`](https://github.com/sunsmarterjie/yolov12/releases/download/turbo/yolov12l.pt)
86
+ [`yolov12x`](https://github.com/sunsmarterjie/yolov12/releases/download/turbo/yolov12x.pt)
87
+
88
+ ```python
89
+ from ultralytics import YOLO
90
+
91
+ model = YOLO('yolov12{n/s/m/l/x}.pt')
92
+ model.val(data='coco.yaml', save_json=True)
93
+ ```
94
+
95
+ ## Training
96
+ ```python
97
+ from ultralytics import YOLO
98
+
99
+ model = YOLO('yolov12n.yaml')
100
+
101
+ # Train the model
102
+ results = model.train(
103
+ data='coco.yaml',
104
+ epochs=600,
105
+ batch=256,
106
+ imgsz=640,
107
+ scale=0.5, # S:0.9; M:0.9; L:0.9; X:0.9
108
+ mosaic=1.0,
109
+ mixup=0.0, # S:0.05; M:0.15; L:0.15; X:0.2
110
+ copy_paste=0.1, # S:0.15; M:0.4; L:0.5; X:0.6
111
+ device="0,1,2,3",
112
+ )
113
+
114
+ # Evaluate model performance on the validation set
115
+ metrics = model.val()
116
+
117
+ # Perform object detection on an image
118
+ results = model("path/to/image.jpg")
119
+ results[0].show()
120
+
121
+ ```
122
+
123
+ ## Prediction
124
+ ```python
125
+ from ultralytics import YOLO
126
+
127
+ model = YOLO('yolov12{n/s/m/l/x}.pt')
128
+ model.predict()
129
+ ```
130
+
131
+ ## Export
132
+ ```python
133
+ from ultralytics import YOLO
134
+
135
+ model = YOLO('yolov12{n/s/m/l/x}.pt')
136
+ model.export(format="engine", half=True) # or format="onnx"
137
+ ```
138
+
139
+
140
+ ## Demo
141
+
142
+ ```
143
+ python app.py
144
+ # Please visit http://127.0.0.1:7860
145
+ ```
146
+
147
+
148
+ ## Acknowledgement
149
+
150
+ The code is based on [ultralytics](https://github.com/ultralytics/ultralytics). Thanks for their excellent work!
151
+
152
+ ## Citation
153
+
154
+ ```BibTeX
155
+ @article{tian2025yolov12,
156
+ title={YOLOv12: Attention-Centric Real-Time Object Detectors},
157
+ author={Tian, Yunjie and Ye, Qixiang and Doermann, David},
158
+ journal={arXiv preprint arXiv:2502.12524},
159
+ year={2025}
160
+ }
161
+ ```
162
+
yolov12/app.py ADDED
@@ -0,0 +1,165 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # Based on yolov10
3
+ # https://github.com/THU-MIG/yolov10/app.py
4
+ # --------------------------------------------------------'
5
+
6
+ import gradio as gr
7
+ import cv2
8
+ import tempfile
9
+ from ultralytics import YOLO
10
+
11
+
12
+ def yolov12_inference(image, video, model_id, image_size, conf_threshold):
13
+ model = YOLO(model_id)
14
+ if image:
15
+ results = model.predict(source=image, imgsz=image_size, conf=conf_threshold)
16
+ annotated_image = results[0].plot()
17
+ return annotated_image[:, :, ::-1], None
18
+ else:
19
+ video_path = tempfile.mktemp(suffix=".webm")
20
+ with open(video_path, "wb") as f:
21
+ with open(video, "rb") as g:
22
+ f.write(g.read())
23
+
24
+ cap = cv2.VideoCapture(video_path)
25
+ fps = cap.get(cv2.CAP_PROP_FPS)
26
+ frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
27
+ frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
28
+
29
+ output_video_path = tempfile.mktemp(suffix=".webm")
30
+ out = cv2.VideoWriter(output_video_path, cv2.VideoWriter_fourcc(*'vp80'), fps, (frame_width, frame_height))
31
+
32
+ while cap.isOpened():
33
+ ret, frame = cap.read()
34
+ if not ret:
35
+ break
36
+
37
+ results = model.predict(source=frame, imgsz=image_size, conf=conf_threshold)
38
+ annotated_frame = results[0].plot()
39
+ out.write(annotated_frame)
40
+
41
+ cap.release()
42
+ out.release()
43
+
44
+ return None, output_video_path
45
+
46
+
47
+ def yolov12_inference_for_examples(image, model_path, image_size, conf_threshold):
48
+ annotated_image, _ = yolov12_inference(image, None, model_path, image_size, conf_threshold)
49
+ return annotated_image
50
+
51
+
52
+ def app():
53
+ with gr.Blocks():
54
+ with gr.Row():
55
+ with gr.Column():
56
+ image = gr.Image(type="pil", label="Image", visible=True)
57
+ video = gr.Video(label="Video", visible=False)
58
+ input_type = gr.Radio(
59
+ choices=["Image", "Video"],
60
+ value="Image",
61
+ label="Input Type",
62
+ )
63
+ model_id = gr.Dropdown(
64
+ label="Model",
65
+ choices=[
66
+ "yolov12n.pt",
67
+ "yolov12s.pt",
68
+ "yolov12m.pt",
69
+ "yolov12l.pt",
70
+ "yolov12x.pt",
71
+ ],
72
+ value="yolov12m.pt",
73
+ )
74
+ image_size = gr.Slider(
75
+ label="Image Size",
76
+ minimum=320,
77
+ maximum=1280,
78
+ step=32,
79
+ value=640,
80
+ )
81
+ conf_threshold = gr.Slider(
82
+ label="Confidence Threshold",
83
+ minimum=0.0,
84
+ maximum=1.0,
85
+ step=0.05,
86
+ value=0.25,
87
+ )
88
+ yolov12_infer = gr.Button(value="Detect Objects")
89
+
90
+ with gr.Column():
91
+ output_image = gr.Image(type="numpy", label="Annotated Image", visible=True)
92
+ output_video = gr.Video(label="Annotated Video", visible=False)
93
+
94
+ def update_visibility(input_type):
95
+ image = gr.update(visible=True) if input_type == "Image" else gr.update(visible=False)
96
+ video = gr.update(visible=False) if input_type == "Image" else gr.update(visible=True)
97
+ output_image = gr.update(visible=True) if input_type == "Image" else gr.update(visible=False)
98
+ output_video = gr.update(visible=False) if input_type == "Image" else gr.update(visible=True)
99
+
100
+ return image, video, output_image, output_video
101
+
102
+ input_type.change(
103
+ fn=update_visibility,
104
+ inputs=[input_type],
105
+ outputs=[image, video, output_image, output_video],
106
+ )
107
+
108
+ def run_inference(image, video, model_id, image_size, conf_threshold, input_type):
109
+ if input_type == "Image":
110
+ return yolov12_inference(image, None, model_id, image_size, conf_threshold)
111
+ else:
112
+ return yolov12_inference(None, video, model_id, image_size, conf_threshold)
113
+
114
+
115
+ yolov12_infer.click(
116
+ fn=run_inference,
117
+ inputs=[image, video, model_id, image_size, conf_threshold, input_type],
118
+ outputs=[output_image, output_video],
119
+ )
120
+
121
+ gr.Examples(
122
+ examples=[
123
+ [
124
+ "ultralytics/assets/bus.jpg",
125
+ "yolov12s.pt",
126
+ 640,
127
+ 0.25,
128
+ ],
129
+ [
130
+ "ultralytics/assets/zidane.jpg",
131
+ "yolov12x.pt",
132
+ 640,
133
+ 0.25,
134
+ ],
135
+ ],
136
+ fn=yolov12_inference_for_examples,
137
+ inputs=[
138
+ image,
139
+ model_id,
140
+ image_size,
141
+ conf_threshold,
142
+ ],
143
+ outputs=[output_image],
144
+ cache_examples='lazy',
145
+ )
146
+
147
+ gradio_app = gr.Blocks()
148
+ with gradio_app:
149
+ gr.HTML(
150
+ """
151
+ <h1 style='text-align: center'>
152
+ YOLOv12: Attention-Centric Real-Time Object Detectors
153
+ </h1>
154
+ """)
155
+ gr.HTML(
156
+ """
157
+ <h3 style='text-align: center'>
158
+ <a href='https://arxiv.org/abs/2502.12524' target='_blank'>arXiv</a> | <a href='https://github.com/sunsmarterjie/yolov12' target='_blank'>github</a>
159
+ </h3>
160
+ """)
161
+ with gr.Row():
162
+ with gr.Column():
163
+ app()
164
+ if __name__ == '__main__':
165
+ gradio_app.launch()
yolov12/assets/tradeoff.svg ADDED
yolov12/assets/tradeoff_turbo.svg ADDED
yolov12/data.yaml ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ names:
2
+ - apple
3
+ - damaged_apple
4
+ nc: 2
5
+ train: ../train/images
6
+ val: ../validation/images
yolov12/detect.py ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import subprocess
2
+ import os
3
+
4
+ def run_yolov12_inference(img_path):
5
+ project_dir = "static/uploaded"
6
+ result_dir = os.path.join(project_dir, "yolov12_output")
7
+
8
+ command = [
9
+ "python", "D:/fruit/yolov12/yolo12/yolov12/detect.py",
10
+ "--weights", "D:/fruit/yolov12/yolo12/yolov12/runs/detect/train7/weights/best.pt",
11
+ "--source", img_path,
12
+ "--conf", "0.25",
13
+ "--save-txt",
14
+ "--save-conf",
15
+ "--project", project_dir,
16
+ "--name", "yolov12_output",
17
+ "--exist-ok"
18
+ ]
19
+
20
+ subprocess.run(command, check=True)
21
+
22
+ # Try reading the prediction txt file
23
+ file_name = os.path.basename(img_path)
24
+ label_file = os.path.join(result_dir, "labels", file_name.replace(".jpg", ".txt"))
25
+
26
+ is_damaged = False
27
+ try:
28
+ with open(label_file, "r") as f:
29
+ for line in f:
30
+ class_id = int(line.split()[0])
31
+ if class_id == 0: # assume damaged_apple is class 0
32
+ is_damaged = True
33
+ break
34
+ except FileNotFoundError:
35
+ pass
36
+
37
+ return is_damaged
yolov12/docker/Dockerfile ADDED
@@ -0,0 +1,92 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Ultralytics YOLO 🚀, AGPL-3.0 license
2
+ # Builds ultralytics/ultralytics:latest image on DockerHub https://hub.docker.com/r/ultralytics/ultralytics
3
+ # Image is CUDA-optimized for YOLO11 single/multi-GPU training and inference
4
+
5
+ # Start FROM PyTorch image https://hub.docker.com/r/pytorch/pytorch or nvcr.io/nvidia/pytorch:23.03-py3
6
+ FROM pytorch/pytorch:2.5.1-cuda12.4-cudnn9-runtime
7
+
8
+ # Set environment variables
9
+ # Avoid DDP error "MKL_THREADING_LAYER=INTEL is incompatible with libgomp.so.1 library" https://github.com/pytorch/pytorch/issues/37377
10
+ ENV PYTHONUNBUFFERED=1 \
11
+ PYTHONDONTWRITEBYTECODE=1 \
12
+ PIP_NO_CACHE_DIR=1 \
13
+ PIP_BREAK_SYSTEM_PACKAGES=1 \
14
+ MKL_THREADING_LAYER=GNU \
15
+ OMP_NUM_THREADS=1
16
+
17
+ # Downloads to user config dir
18
+ ADD https://github.com/ultralytics/assets/releases/download/v0.0.0/Arial.ttf \
19
+ https://github.com/ultralytics/assets/releases/download/v0.0.0/Arial.Unicode.ttf \
20
+ /root/.config/Ultralytics/
21
+
22
+ # Install linux packages
23
+ # g++ required to build 'tflite_support' and 'lap' packages, libusb-1.0-0 required for 'tflite_support' package
24
+ # libsm6 required by libqxcb to create QT-based windows for visualization; set 'QT_DEBUG_PLUGINS=1' to test in docker
25
+ RUN apt-get update && \
26
+ apt-get install -y --no-install-recommends \
27
+ gcc git zip unzip wget curl htop libgl1 libglib2.0-0 libpython3-dev gnupg g++ libusb-1.0-0 libsm6 \
28
+ && rm -rf /var/lib/apt/lists/*
29
+
30
+ # Security updates
31
+ # https://security.snyk.io/vuln/SNYK-UBUNTU1804-OPENSSL-3314796
32
+ RUN apt upgrade --no-install-recommends -y openssl tar
33
+
34
+ # Create working directory
35
+ WORKDIR /ultralytics
36
+
37
+ # Copy contents and configure git
38
+ COPY . .
39
+ RUN sed -i '/^\[http "https:\/\/github\.com\/"\]/,+1d' .git/config
40
+ ADD https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n.pt .
41
+
42
+ # Install pip packages
43
+ RUN pip install uv
44
+ # Note -cu12 must be used with tensorrt
45
+ RUN uv pip install --system -e ".[export]" tensorrt-cu12 "albumentations>=1.4.6" comet pycocotools
46
+
47
+ # Run exports to AutoInstall packages
48
+ # Edge TPU export fails the first time so is run twice here
49
+ RUN yolo export model=tmp/yolo11n.pt format=edgetpu imgsz=32 || yolo export model=tmp/yolo11n.pt format=edgetpu imgsz=32
50
+ RUN yolo export model=tmp/yolo11n.pt format=ncnn imgsz=32
51
+ # Requires <= Python 3.10, bug with paddlepaddle==2.5.0 https://github.com/PaddlePaddle/X2Paddle/issues/991
52
+ RUN uv pip install --system "paddlepaddle>=2.6.0" x2paddle
53
+ # Fix error: `np.bool` was a deprecated alias for the builtin `bool` segmentation error in Tests
54
+ RUN uv pip install --system numpy==1.23.5
55
+
56
+ # Remove extra build files
57
+ RUN rm -rf tmp /root/.config/Ultralytics/persistent_cache.json
58
+
59
+ # Usage Examples -------------------------------------------------------------------------------------------------------
60
+
61
+ # Build and Push
62
+ # t=ultralytics/ultralytics:latest && sudo docker build -f docker/Dockerfile -t $t . && sudo docker push $t
63
+
64
+ # Pull and Run with access to all GPUs
65
+ # t=ultralytics/ultralytics:latest && sudo docker pull $t && sudo docker run -it --ipc=host --gpus all $t
66
+
67
+ # Pull and Run with access to GPUs 2 and 3 (inside container CUDA devices will appear as 0 and 1)
68
+ # t=ultralytics/ultralytics:latest && sudo docker pull $t && sudo docker run -it --ipc=host --gpus '"device=2,3"' $t
69
+
70
+ # Pull and Run with local directory access
71
+ # t=ultralytics/ultralytics:latest && sudo docker pull $t && sudo docker run -it --ipc=host --gpus all -v "$(pwd)"/shared/datasets:/datasets $t
72
+
73
+ # Kill all
74
+ # sudo docker kill $(sudo docker ps -q)
75
+
76
+ # Kill all image-based
77
+ # sudo docker kill $(sudo docker ps -qa --filter ancestor=ultralytics/ultralytics:latest)
78
+
79
+ # DockerHub tag update
80
+ # t=ultralytics/ultralytics:latest tnew=ultralytics/ultralytics:v6.2 && sudo docker pull $t && sudo docker tag $t $tnew && sudo docker push $tnew
81
+
82
+ # Clean up
83
+ # sudo docker system prune -a --volumes
84
+
85
+ # Update Ubuntu drivers
86
+ # https://www.maketecheasier.com/install-nvidia-drivers-ubuntu/
87
+
88
+ # DDP test
89
+ # python -m torch.distributed.run --nproc_per_node 2 --master_port 1 train.py --epochs 3
90
+
91
+ # GCP VM from Image
92
+ # docker.io/ultralytics/ultralytics:latest
yolov12/docker/Dockerfile-arm64 ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Ultralytics YOLO 🚀, AGPL-3.0 license
2
+ # Builds ultralytics/ultralytics:latest-arm64 image on DockerHub https://hub.docker.com/r/ultralytics/ultralytics
3
+ # Image is aarch64-compatible for Apple M1, M2, M3, Raspberry Pi and other ARM architectures
4
+
5
+ # Start FROM Ubuntu image https://hub.docker.com/_/ubuntu with "FROM arm64v8/ubuntu:22.04" (deprecated)
6
+ # Start FROM Debian image for arm64v8 https://hub.docker.com/r/arm64v8/debian (new)
7
+ FROM arm64v8/debian:bookworm-slim
8
+
9
+ # Set environment variables
10
+ ENV PYTHONUNBUFFERED=1 \
11
+ PYTHONDONTWRITEBYTECODE=1 \
12
+ PIP_NO_CACHE_DIR=1 \
13
+ PIP_BREAK_SYSTEM_PACKAGES=1
14
+
15
+ # Downloads to user config dir
16
+ ADD https://github.com/ultralytics/assets/releases/download/v0.0.0/Arial.ttf \
17
+ https://github.com/ultralytics/assets/releases/download/v0.0.0/Arial.Unicode.ttf \
18
+ /root/.config/Ultralytics/
19
+
20
+ # Install linux packages
21
+ # g++ required to build 'tflite_support' and 'lap' packages, libusb-1.0-0 required for 'tflite_support' package
22
+ # pkg-config and libhdf5-dev (not included) are needed to build 'h5py==3.11.0' aarch64 wheel required by 'tensorflow'
23
+ RUN apt-get update && \
24
+ apt-get install -y --no-install-recommends \
25
+ python3-pip git zip unzip wget curl htop gcc libgl1 libglib2.0-0 libpython3-dev gnupg g++ libusb-1.0-0 \
26
+ && rm -rf /var/lib/apt/lists/*
27
+
28
+ # Create working directory
29
+ WORKDIR /ultralytics
30
+
31
+ # Copy contents and configure git
32
+ COPY . .
33
+ RUN sed -i '/^\[http "https:\/\/github\.com\/"\]/,+1d' .git/config
34
+ ADD https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n.pt .
35
+
36
+ # Install pip packages
37
+ RUN pip install uv
38
+ RUN uv pip install --system -e ".[export]" --break-system-packages
39
+
40
+ # Creates a symbolic link to make 'python' point to 'python3'
41
+ RUN ln -sf /usr/bin/python3 /usr/bin/python
42
+
43
+ # Remove extra build files
44
+ RUN rm -rf /root/.config/Ultralytics/persistent_cache.json
45
+
46
+ # Usage Examples -------------------------------------------------------------------------------------------------------
47
+
48
+ # Build and Push
49
+ # t=ultralytics/ultralytics:latest-arm64 && sudo docker build --platform linux/arm64 -f docker/Dockerfile-arm64 -t $t . && sudo docker push $t
50
+
51
+ # Run
52
+ # t=ultralytics/ultralytics:latest-arm64 && sudo docker run -it --ipc=host $t
53
+
54
+ # Pull and Run
55
+ # t=ultralytics/ultralytics:latest-arm64 && sudo docker pull $t && sudo docker run -it --ipc=host $t
56
+
57
+ # Pull and Run with local volume mounted
58
+ # t=ultralytics/ultralytics:latest-arm64 && sudo docker pull $t && sudo docker run -it --ipc=host -v "$(pwd)"/shared/datasets:/datasets $t
yolov12/docker/Dockerfile-conda ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Ultralytics YOLO 🚀, AGPL-3.0 license
2
+ # Builds ultralytics/ultralytics:latest-conda image on DockerHub https://hub.docker.com/r/ultralytics/ultralytics
3
+ # Image is optimized for Ultralytics Anaconda (https://anaconda.org/conda-forge/ultralytics) installation and usage
4
+
5
+ # Start FROM miniconda3 image https://hub.docker.com/r/continuumio/miniconda3
6
+ FROM continuumio/miniconda3:latest
7
+
8
+ # Set environment variables
9
+ ENV PYTHONUNBUFFERED=1 \
10
+ PYTHONDONTWRITEBYTECODE=1 \
11
+ PIP_NO_CACHE_DIR=1 \
12
+ PIP_BREAK_SYSTEM_PACKAGES=1
13
+
14
+ # Downloads to user config dir
15
+ ADD https://github.com/ultralytics/assets/releases/download/v0.0.0/Arial.ttf \
16
+ https://github.com/ultralytics/assets/releases/download/v0.0.0/Arial.Unicode.ttf \
17
+ /root/.config/Ultralytics/
18
+
19
+ # Install linux packages
20
+ RUN apt-get update && \
21
+ apt-get install -y --no-install-recommends \
22
+ libgl1 \
23
+ && rm -rf /var/lib/apt/lists/*
24
+
25
+ # Copy contents
26
+ ADD https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n.pt .
27
+
28
+ # Install conda packages
29
+ # mkl required to fix 'OSError: libmkl_intel_lp64.so.2: cannot open shared object file: No such file or directory'
30
+ RUN conda config --set solver libmamba && \
31
+ conda install pytorch torchvision pytorch-cuda=12.1 -c pytorch -c nvidia && \
32
+ conda install -c conda-forge ultralytics mkl
33
+ # conda install -c pytorch -c nvidia -c conda-forge pytorch torchvision pytorch-cuda=12.1 ultralytics mkl
34
+
35
+ # Remove extra build files
36
+ RUN rm -rf /root/.config/Ultralytics/persistent_cache.json
37
+
38
+ # Usage Examples -------------------------------------------------------------------------------------------------------
39
+
40
+ # Build and Push
41
+ # t=ultralytics/ultralytics:latest-conda && sudo docker build -f docker/Dockerfile-cpu -t $t . && sudo docker push $t
42
+
43
+ # Run
44
+ # t=ultralytics/ultralytics:latest-conda && sudo docker run -it --ipc=host $t
45
+
46
+ # Pull and Run
47
+ # t=ultralytics/ultralytics:latest-conda && sudo docker pull $t && sudo docker run -it --ipc=host $t
48
+
49
+ # Pull and Run with local volume mounted
50
+ # t=ultralytics/ultralytics:latest-conda && sudo docker pull $t && sudo docker run -it --ipc=host -v "$(pwd)"/shared/datasets:/datasets $t
yolov12/docker/Dockerfile-cpu ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Ultralytics YOLO 🚀, AGPL-3.0 license
2
+ # Builds ultralytics/ultralytics:latest-cpu image on DockerHub https://hub.docker.com/r/ultralytics/ultralytics
3
+ # Image is CPU-optimized for ONNX, OpenVINO and PyTorch YOLO11 deployments
4
+
5
+ # Use official Python base image for reproducibility (3.11.10 for export and 3.12.6 for inference)
6
+ FROM python:3.11.10-slim-bookworm
7
+
8
+ # Set environment variables
9
+ ENV PYTHONUNBUFFERED=1 \
10
+ PYTHONDONTWRITEBYTECODE=1 \
11
+ PIP_NO_CACHE_DIR=1 \
12
+ PIP_BREAK_SYSTEM_PACKAGES=1
13
+
14
+ # Downloads to user config dir
15
+ ADD https://github.com/ultralytics/assets/releases/download/v0.0.0/Arial.ttf \
16
+ https://github.com/ultralytics/assets/releases/download/v0.0.0/Arial.Unicode.ttf \
17
+ /root/.config/Ultralytics/
18
+
19
+ # Install linux packages
20
+ # g++ required to build 'tflite_support' and 'lap' packages, libusb-1.0-0 required for 'tflite_support' package
21
+ RUN apt-get update && \
22
+ apt-get install -y --no-install-recommends \
23
+ python3-pip git zip unzip wget curl htop libgl1 libglib2.0-0 libpython3-dev gnupg g++ libusb-1.0-0 \
24
+ && rm -rf /var/lib/apt/lists/*
25
+
26
+ # Create working directory
27
+ WORKDIR /ultralytics
28
+
29
+ # Copy contents and configure git
30
+ COPY . .
31
+ RUN sed -i '/^\[http "https:\/\/github\.com\/"\]/,+1d' .git/config
32
+ ADD https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n.pt .
33
+
34
+ # Install pip packages
35
+ RUN pip install uv
36
+ RUN uv pip install --system -e ".[export]" --extra-index-url https://download.pytorch.org/whl/cpu --index-strategy unsafe-first-match
37
+
38
+ # Run exports to AutoInstall packages
39
+ RUN yolo export model=tmp/yolo11n.pt format=edgetpu imgsz=32
40
+ RUN yolo export model=tmp/yolo11n.pt format=ncnn imgsz=32
41
+ # Requires Python<=3.10, bug with paddlepaddle==2.5.0 https://github.com/PaddlePaddle/X2Paddle/issues/991
42
+ RUN uv pip install --system "paddlepaddle>=2.6.0" x2paddle
43
+
44
+ # Remove extra build files
45
+ RUN rm -rf tmp /root/.config/Ultralytics/persistent_cache.json
46
+
47
+ # Set default command to bash
48
+ CMD ["/bin/bash"]
49
+
50
+ # Usage Examples -------------------------------------------------------------------------------------------------------
51
+
52
+ # Build and Push
53
+ # t=ultralytics/ultralytics:latest-cpu && sudo docker build -f docker/Dockerfile-cpu -t $t . && sudo docker push $t
54
+
55
+ # Run
56
+ # t=ultralytics/ultralytics:latest-cpu && sudo docker run -it --ipc=host --name NAME $t
57
+
58
+ # Pull and Run
59
+ # t=ultralytics/ultralytics:latest-cpu && sudo docker pull $t && sudo docker run -it --ipc=host --name NAME $t
60
+
61
+ # Pull and Run with local volume mounted
62
+ # t=ultralytics/ultralytics:latest-cpu && sudo docker pull $t && sudo docker run -it --ipc=host -v "$(pwd)"/shared/datasets:/datasets $t
yolov12/docker/Dockerfile-jetson-jetpack4 ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Ultralytics YOLO 🚀, AGPL-3.0 license
2
+ # Builds ultralytics/ultralytics:jetson-jetpack4 image on DockerHub https://hub.docker.com/r/ultralytics/ultralytics
3
+ # Supports JetPack4.x for YOLO11 on Jetson Nano, TX2, Xavier NX, AGX Xavier
4
+
5
+ # Start FROM https://catalog.ngc.nvidia.com/orgs/nvidia/containers/l4t-cuda
6
+ FROM nvcr.io/nvidia/l4t-cuda:10.2.460-runtime
7
+
8
+ # Set environment variables
9
+ ENV PYTHONUNBUFFERED=1 \
10
+ PYTHONDONTWRITEBYTECODE=1
11
+
12
+ # Downloads to user config dir
13
+ ADD https://github.com/ultralytics/assets/releases/download/v0.0.0/Arial.ttf \
14
+ https://github.com/ultralytics/assets/releases/download/v0.0.0/Arial.Unicode.ttf \
15
+ /root/.config/Ultralytics/
16
+
17
+ # Add NVIDIA repositories for TensorRT dependencies
18
+ RUN wget -q -O - https://repo.download.nvidia.com/jetson/jetson-ota-public.asc | apt-key add - && \
19
+ echo "deb https://repo.download.nvidia.com/jetson/common r32.7 main" > /etc/apt/sources.list.d/nvidia-l4t-apt-source.list && \
20
+ echo "deb https://repo.download.nvidia.com/jetson/t194 r32.7 main" >> /etc/apt/sources.list.d/nvidia-l4t-apt-source.list
21
+
22
+ # Install dependencies
23
+ RUN apt-get update && \
24
+ apt-get install -y --no-install-recommends \
25
+ git python3.8 python3.8-dev python3-pip python3-libnvinfer libopenmpi-dev libopenblas-base libomp-dev gcc \
26
+ && rm -rf /var/lib/apt/lists/*
27
+
28
+ # Create symbolic links for python3.8 and pip3
29
+ RUN ln -sf /usr/bin/python3.8 /usr/bin/python3
30
+ RUN ln -s /usr/bin/pip3 /usr/bin/pip
31
+
32
+ # Create working directory
33
+ WORKDIR /ultralytics
34
+
35
+ # Copy contents and configure git
36
+ COPY . .
37
+ RUN sed -i '/^\[http "https:\/\/github\.com\/"\]/,+1d' .git/config
38
+ ADD https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n.pt .
39
+
40
+ # Download onnxruntime-gpu 1.8.0 and tensorrt 8.2.0.6
41
+ # Other versions can be seen in https://elinux.org/Jetson_Zoo and https://forums.developer.nvidia.com/t/pytorch-for-jetson/72048
42
+ ADD https://nvidia.box.com/shared/static/gjqofg7rkg97z3gc8jeyup6t8n9j8xjw.whl onnxruntime_gpu-1.8.0-cp38-cp38-linux_aarch64.whl
43
+ ADD https://forums.developer.nvidia.com/uploads/short-url/hASzFOm9YsJx6VVFrDW1g44CMmv.whl tensorrt-8.2.0.6-cp38-none-linux_aarch64.whl
44
+
45
+ # Install pip packages
46
+ RUN python3 -m pip install --upgrade pip
47
+ RUN python3 -m pip install uv
48
+ RUN uv pip install --system \
49
+ onnxruntime_gpu-1.8.0-cp38-cp38-linux_aarch64.whl \
50
+ tensorrt-8.2.0.6-cp38-none-linux_aarch64.whl \
51
+ https://github.com/ultralytics/assets/releases/download/v0.0.0/torch-1.11.0a0+gitbc2c6ed-cp38-cp38-linux_aarch64.whl \
52
+ https://github.com/ultralytics/assets/releases/download/v0.0.0/torchvision-0.12.0a0+9b5a3fe-cp38-cp38-linux_aarch64.whl
53
+ RUN uv pip install --system -e ".[export]"
54
+
55
+ # Remove extra build files
56
+ RUN rm -rf *.whl /root/.config/Ultralytics/persistent_cache.json
57
+
58
+ # Usage Examples -------------------------------------------------------------------------------------------------------
59
+
60
+ # Build and Push
61
+ # t=ultralytics/ultralytics:latest-jetson-jetpack4 && sudo docker build --platform linux/arm64 -f docker/Dockerfile-jetson-jetpack4 -t $t . && sudo docker push $t
62
+
63
+ # Run
64
+ # t=ultralytics/ultralytics:latest-jetson-jetpack4 && sudo docker run -it --ipc=host $t
65
+
66
+ # Pull and Run
67
+ # t=ultralytics/ultralytics:latest-jetson-jetpack4 && sudo docker pull $t && sudo docker run -it --ipc=host $t
68
+
69
+ # Pull and Run with NVIDIA runtime
70
+ # t=ultralytics/ultralytics:latest-jetson-jetpack4 && sudo docker pull $t && sudo docker run -it --ipc=host --runtime=nvidia $t
yolov12/docker/Dockerfile-jetson-jetpack5 ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Ultralytics YOLO 🚀, AGPL-3.0 license
2
+ # Builds ultralytics/ultralytics:jetson-jetson-jetpack5 image on DockerHub https://hub.docker.com/r/ultralytics/ultralytics
3
+ # Supports JetPack5.1.2 for YOLO11 on Jetson Xavier NX, AGX Xavier, AGX Orin, Orin Nano and Orin NX
4
+
5
+ # Start FROM https://catalog.ngc.nvidia.com/orgs/nvidia/containers/l4t-jetpack
6
+ FROM nvcr.io/nvidia/l4t-jetpack:r35.4.1
7
+
8
+ # Set environment variables
9
+ ENV PYTHONUNBUFFERED=1 \
10
+ PYTHONDONTWRITEBYTECODE=1 \
11
+ PIP_NO_CACHE_DIR=1 \
12
+ PIP_BREAK_SYSTEM_PACKAGES=1
13
+
14
+ # Downloads to user config dir
15
+ ADD https://github.com/ultralytics/assets/releases/download/v0.0.0/Arial.ttf \
16
+ https://github.com/ultralytics/assets/releases/download/v0.0.0/Arial.Unicode.ttf \
17
+ /root/.config/Ultralytics/
18
+
19
+ # Install dependencies
20
+ RUN apt-get update && \
21
+ apt-get install -y --no-install-recommends \
22
+ git python3-pip libopenmpi-dev libopenblas-base libomp-dev \
23
+ && rm -rf /var/lib/apt/lists/*
24
+
25
+ # Create working directory
26
+ WORKDIR /ultralytics
27
+
28
+ # Copy contents and configure git
29
+ COPY . .
30
+ RUN sed -i '/^\[http "https:\/\/github\.com\/"\]/,+1d' .git/config
31
+ ADD https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n.pt .
32
+
33
+ # Pip install onnxruntime-gpu, torch, torchvision and ultralytics
34
+ RUN python3 -m pip install --upgrade pip uv
35
+ RUN uv pip install --system \
36
+ https://github.com/ultralytics/assets/releases/download/v0.0.0/onnxruntime_gpu-1.18.0-cp38-cp38-linux_aarch64.whl \
37
+ https://github.com/ultralytics/assets/releases/download/v0.0.0/torch-2.1.0a0+41361538.nv23.06-cp38-cp38-linux_aarch64.whl \
38
+ https://github.com/ultralytics/assets/releases/download/v0.0.0/torchvision-0.16.2+c6f3977-cp38-cp38-linux_aarch64.whl
39
+
40
+ RUN uv pip install --system -e ".[export]"
41
+
42
+ # Remove extra build files
43
+ RUN rm -rf *.whl /root/.config/Ultralytics/persistent_cache.json
44
+
45
+ # Usage Examples -------------------------------------------------------------------------------------------------------
46
+
47
+ # Build and Push
48
+ # t=ultralytics/ultralytics:latest-jetson-jetpack5 && sudo docker build --platform linux/arm64 -f docker/Dockerfile-jetson-jetpack5 -t $t . && sudo docker push $t
49
+
50
+ # Run
51
+ # t=ultralytics/ultralytics:latest-jetson-jetpack5 && sudo docker run -it --ipc=host $t
52
+
53
+ # Pull and Run
54
+ # t=ultralytics/ultralytics:latest-jetson-jetpack5 && sudo docker pull $t && sudo docker run -it --ipc=host $t
55
+
56
+ # Pull and Run with NVIDIA runtime
57
+ # t=ultralytics/ultralytics:latest-jetson-jetpack5 && sudo docker pull $t && sudo docker run -it --ipc=host --runtime=nvidia $t
yolov12/docker/Dockerfile-jetson-jetpack6 ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Ultralytics YOLO 🚀, AGPL-3.0 license
2
+ # Builds ultralytics/ultralytics:jetson-jetpack6 image on DockerHub https://hub.docker.com/r/ultralytics/ultralytics
3
+ # Supports JetPack6.1 for YOLO11 on Jetson AGX Orin, Orin NX and Orin Nano Series
4
+
5
+ # Start FROM https://catalog.ngc.nvidia.com/orgs/nvidia/containers/l4t-jetpack
6
+ FROM nvcr.io/nvidia/l4t-jetpack:r36.4.0
7
+
8
+ # Set environment variables
9
+ ENV PYTHONUNBUFFERED=1 \
10
+ PYTHONDONTWRITEBYTECODE=1 \
11
+ PIP_NO_CACHE_DIR=1 \
12
+ PIP_BREAK_SYSTEM_PACKAGES=1
13
+
14
+ # Downloads to user config dir
15
+ ADD https://github.com/ultralytics/assets/releases/download/v0.0.0/Arial.ttf \
16
+ https://github.com/ultralytics/assets/releases/download/v0.0.0/Arial.Unicode.ttf \
17
+ /root/.config/Ultralytics/
18
+
19
+ # Install dependencies
20
+ ADD https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/arm64/cuda-keyring_1.1-1_all.deb .
21
+ RUN dpkg -i cuda-keyring_1.1-1_all.deb && \
22
+ apt-get update && \
23
+ apt-get install -y --no-install-recommends \
24
+ git python3-pip libopenmpi-dev libopenblas-base libomp-dev libcusparselt0 libcusparselt-dev \
25
+ && rm -rf /var/lib/apt/lists/*
26
+
27
+ # Create working directory
28
+ WORKDIR /ultralytics
29
+
30
+ # Copy contents and configure git
31
+ COPY . .
32
+ RUN sed -i '/^\[http "https:\/\/github\.com\/"\]/,+1d' .git/config
33
+ ADD https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n.pt .
34
+
35
+ # Pip install onnxruntime-gpu, torch, torchvision and ultralytics
36
+ RUN python3 -m pip install --upgrade pip uv
37
+ RUN uv pip install --system \
38
+ https://github.com/ultralytics/assets/releases/download/v0.0.0/onnxruntime_gpu-1.20.0-cp310-cp310-linux_aarch64.whl \
39
+ https://github.com/ultralytics/assets/releases/download/v0.0.0/torch-2.5.0a0+872d972e41.nv24.08-cp310-cp310-linux_aarch64.whl \
40
+ https://github.com/ultralytics/assets/releases/download/v0.0.0/torchvision-0.20.0a0+afc54f7-cp310-cp310-linux_aarch64.whl
41
+ RUN uv pip install --system -e ".[export]"
42
+
43
+ # Remove extra build files
44
+ RUN rm -rf *.whl /root/.config/Ultralytics/persistent_cache.json
45
+
46
+ # Usage Examples -------------------------------------------------------------------------------------------------------
47
+
48
+ # Build and Push
49
+ # t=ultralytics/ultralytics:latest-jetson-jetpack6 && sudo docker build --platform linux/arm64 -f docker/Dockerfile-jetson-jetpack6 -t $t . && sudo docker push $t
50
+
51
+ # Run
52
+ # t=ultralytics/ultralytics:latest-jetson-jetpack6 && sudo docker run -it --ipc=host $t
53
+
54
+ # Pull and Run
55
+ # t=ultralytics/ultralytics:latest-jetson-jetpack6 && sudo docker pull $t && sudo docker run -it --ipc=host $t
56
+
57
+ # Pull and Run with NVIDIA runtime
58
+ # t=ultralytics/ultralytics:latest-jetson-jetpack6 && sudo docker pull $t && sudo docker run -it --ipc=host --runtime=nvidia $t
yolov12/docker/Dockerfile-jupyter ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Ultralytics YOLO 🚀, AGPL-3.0 license
2
+ # Builds ultralytics/ultralytics:latest-jupyter image on DockerHub https://hub.docker.com/r/ultralytics/ultralytics
3
+ # Image provides JupyterLab interface for interactive YOLO development and includes tutorial notebooks
4
+
5
+ # Start from Python-based Ultralytics image for full Python environment
6
+ FROM ultralytics/ultralytics:latest-python
7
+
8
+ # Install JupyterLab for interactive development
9
+ RUN uv pip install --system jupyterlab
10
+
11
+ # Create persistent data directory structure
12
+ RUN mkdir /data
13
+
14
+ # Configure YOLO directories
15
+ RUN mkdir /data/{datasets,weights,runs} && \
16
+ yolo settings datasets_dir="/data/datasets" weights_dir="/data/weights" runs_dir="/data/runs"
17
+
18
+ # Start JupyterLab with tutorial notebook
19
+ ENTRYPOINT ["/usr/local/bin/jupyter", "lab", "--allow-root", "--ip=*", "/ultralytics/examples/tutorial.ipynb"]
20
+
21
+ # Usage Examples -------------------------------------------------------------------------------------------------------
22
+
23
+ # Build and Push
24
+ # t=ultralytics/ultralytics:latest-jupyter && sudo docker build -f docker/Dockerfile-jupyter -t $t . && sudo docker push $t
25
+
26
+ # Run
27
+ # t=ultralytics/ultralytics:latest-jupyter && sudo docker run -it --ipc=host -p 8888:8888 $t
28
+
29
+ # Pull and Run
30
+ # t=ultralytics/ultralytics:latest-jupyter && sudo docker pull $t && sudo docker run -it --ipc=host -p 8888:8888 $t
31
+
32
+ # Pull and Run with local volume mounted
33
+ # t=ultralytics/ultralytics:latest-jupyter && sudo docker pull $t && sudo docker run -it --ipc=host -p 8888:8888 -v "$(pwd)"/datasets:/data/datasets $t
yolov12/docker/Dockerfile-python ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Ultralytics YOLO 🚀, AGPL-3.0 license
2
+ # Builds ultralytics/ultralytics:latest-cpu image on DockerHub https://hub.docker.com/r/ultralytics/ultralytics
3
+ # Image is CPU-optimized for ONNX, OpenVINO and PyTorch YOLO11 deployments
4
+
5
+ # Use official Python base image for reproducibility (3.11.10 for export and 3.12.6 for inference)
6
+ FROM python:3.11.10-slim-bookworm
7
+
8
+ # Set environment variables
9
+ ENV PYTHONUNBUFFERED=1 \
10
+ PYTHONDONTWRITEBYTECODE=1 \
11
+ PIP_NO_CACHE_DIR=1 \
12
+ PIP_BREAK_SYSTEM_PACKAGES=1
13
+
14
+ # Downloads to user config dir
15
+ ADD https://github.com/ultralytics/assets/releases/download/v0.0.0/Arial.ttf \
16
+ https://github.com/ultralytics/assets/releases/download/v0.0.0/Arial.Unicode.ttf \
17
+ /root/.config/Ultralytics/
18
+
19
+ # Install linux packages
20
+ # g++ required to build 'tflite_support' and 'lap' packages, libusb-1.0-0 required for 'tflite_support' package
21
+ RUN apt-get update && \
22
+ apt-get install -y --no-install-recommends \
23
+ python3-pip git zip unzip wget curl htop libgl1 libglib2.0-0 libpython3-dev gnupg g++ libusb-1.0-0 \
24
+ && rm -rf /var/lib/apt/lists/*
25
+
26
+ # Create working directory
27
+ WORKDIR /ultralytics
28
+
29
+ # Copy contents and configure git
30
+ COPY . .
31
+ RUN sed -i '/^\[http "https:\/\/github\.com\/"\]/,+1d' .git/config
32
+ ADD https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n.pt .
33
+
34
+ # Install pip packages
35
+ RUN pip install uv
36
+ RUN uv pip install --system -e ".[export]" --extra-index-url https://download.pytorch.org/whl/cpu --index-strategy unsafe-first-match
37
+
38
+ # Run exports to AutoInstall packages
39
+ RUN yolo export model=tmp/yolo11n.pt format=edgetpu imgsz=32
40
+ RUN yolo export model=tmp/yolo11n.pt format=ncnn imgsz=32
41
+ # Requires Python<=3.10, bug with paddlepaddle==2.5.0 https://github.com/PaddlePaddle/X2Paddle/issues/991
42
+ RUN uv pip install --system "paddlepaddle>=2.6.0" x2paddle
43
+
44
+ # Remove extra build files
45
+ RUN rm -rf tmp /root/.config/Ultralytics/persistent_cache.json
46
+
47
+ # Usage Examples -------------------------------------------------------------------------------------------------------
48
+
49
+ # Build and Push
50
+ # t=ultralytics/ultralytics:latest-python && sudo docker build -f docker/Dockerfile-python -t $t . && sudo docker push $t
51
+
52
+ # Run
53
+ # t=ultralytics/ultralytics:latest-python && sudo docker run -it --ipc=host $t
54
+
55
+ # Pull and Run
56
+ # t=ultralytics/ultralytics:latest-python && sudo docker pull $t && sudo docker run -it --ipc=host $t
57
+
58
+ # Pull and Run with local volume mounted
59
+ # t=ultralytics/ultralytics:latest-python && sudo docker pull $t && sudo docker run -it --ipc=host -v "$(pwd)"/shared/datasets:/datasets $t
yolov12/docker/Dockerfile-runner ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Ultralytics YOLO 🚀, AGPL-3.0 license
2
+ # Builds GitHub actions CI runner image for deployment to DockerHub https://hub.docker.com/r/ultralytics/ultralytics
3
+ # Image is CUDA-optimized for YOLO11 single/multi-GPU training and inference tests
4
+
5
+ # Start FROM Ultralytics GPU image
6
+ FROM ultralytics/ultralytics:latest
7
+
8
+ # Set environment variables
9
+ ENV PYTHONUNBUFFERED=1 \
10
+ PYTHONDONTWRITEBYTECODE=1 \
11
+ PIP_NO_CACHE_DIR=1 \
12
+ PIP_BREAK_SYSTEM_PACKAGES=1 \
13
+ RUNNER_ALLOW_RUNASROOT=1 \
14
+ DEBIAN_FRONTEND=noninteractive
15
+
16
+ # Set the working directory
17
+ WORKDIR /actions-runner
18
+
19
+ # Download and unpack the latest runner from https://github.com/actions/runner
20
+ RUN FILENAME=actions-runner-linux-x64-2.320.0.tar.gz && \
21
+ curl -o $FILENAME -L https://github.com/actions/runner/releases/download/v2.320.0/$FILENAME && \
22
+ tar xzf $FILENAME && \
23
+ rm $FILENAME
24
+
25
+ # Install runner dependencies
26
+ RUN uv pip install --system pytest-cov
27
+ RUN ./bin/installdependencies.sh && \
28
+ apt-get -y install libicu-dev
29
+
30
+ # Inline ENTRYPOINT command to configure and start runner with default TOKEN and NAME
31
+ ENTRYPOINT sh -c './config.sh --url https://github.com/ultralytics/ultralytics \
32
+ --token ${GITHUB_RUNNER_TOKEN:-TOKEN} \
33
+ --name ${GITHUB_RUNNER_NAME:-NAME} \
34
+ --labels gpu-latest \
35
+ --replace && \
36
+ ./run.sh'
37
+
38
+ # Usage Examples -------------------------------------------------------------------------------------------------------
39
+
40
+ # Build and Push
41
+ # t=ultralytics/ultralytics:latest-runner && sudo docker build -f docker/Dockerfile-runner -t $t . && sudo docker push $t
42
+
43
+ # Pull and Run in detached mode with access to GPUs 0 and 1
44
+ # t=ultralytics/ultralytics:latest-runner && sudo docker run -d -e GITHUB_RUNNER_TOKEN=TOKEN -e GITHUB_RUNNER_NAME=NAME --ipc=host --gpus '"device=0,1"' $t
yolov12/examples/README.md ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ## Ultralytics Examples
2
+
3
+ This directory features a collection of real-world applications and walkthroughs, provided as either Python files or notebooks. Explore the examples below to see how YOLO can be integrated into various applications.
4
+
5
+ ### Ultralytics YOLO Example Applications
6
+
7
+ | Title | Format | Contributor |
8
+ | ----------------------------------------------------------------------------------------------------------------------------------------- | ------------------ | ----------------------------------------------------------------------------------------- |
9
+ | [YOLO ONNX Detection Inference with C++](./YOLOv8-CPP-Inference) | C++/ONNX | [Justas Bartnykas](https://github.com/JustasBart) |
10
+ | [YOLO OpenCV ONNX Detection Python](./YOLOv8-OpenCV-ONNX-Python) | OpenCV/Python/ONNX | [Farid Inawan](https://github.com/frdteknikelektro) |
11
+ | [YOLO C# ONNX-Runtime](https://github.com/dme-compunet/YoloSharp) | .NET/ONNX-Runtime | [Compunet](https://github.com/dme-compunet) |
12
+ | [YOLO .Net ONNX Detection C#](https://www.nuget.org/packages/Yolov8.Net) | C# .Net | [Samuel Stainback](https://github.com/sstainba) |
13
+ | [YOLOv8 on NVIDIA Jetson(TensorRT and DeepStream)](https://wiki.seeedstudio.com/YOLOv8-DeepStream-TRT-Jetson/) | Python | [Lakshantha](https://github.com/lakshanthad) |
14
+ | [YOLOv8 ONNXRuntime Python](./YOLOv8-ONNXRuntime) | Python/ONNXRuntime | [Semih Demirel](https://github.com/semihhdemirel) |
15
+ | [RTDETR ONNXRuntime Python](./RTDETR-ONNXRuntime-Python) | Python/ONNXRuntime | [Semih Demirel](https://github.com/semihhdemirel) |
16
+ | [YOLOv8 ONNXRuntime CPP](./YOLOv8-ONNXRuntime-CPP) | C++/ONNXRuntime | [DennisJcy](https://github.com/DennisJcy), [Onuralp Sezer](https://github.com/onuralpszr) |
17
+ | [RTDETR ONNXRuntime C#](https://github.com/Kayzwer/yolo-cs/blob/master/RTDETR.cs) | C#/ONNX | [Kayzwer](https://github.com/Kayzwer) |
18
+ | [YOLOv8 SAHI Video Inference](https://github.com/RizwanMunawar/ultralytics/blob/main/examples/YOLOv8-SAHI-Inference-Video/yolov8_sahi.py) | Python | [Muhammad Rizwan Munawar](https://github.com/RizwanMunawar) |
19
+ | [YOLOv8 Region Counter](https://github.com/RizwanMunawar/ultralytics/blob/main/examples/YOLOv8-Region-Counter/yolov8_region_counter.py) | Python | [Muhammad Rizwan Munawar](https://github.com/RizwanMunawar) |
20
+ | [YOLOv8 Segmentation ONNXRuntime Python](./YOLOv8-Segmentation-ONNXRuntime-Python) | Python/ONNXRuntime | [jamjamjon](https://github.com/jamjamjon) |
21
+ | [YOLOv8 LibTorch CPP](./YOLOv8-LibTorch-CPP-Inference) | C++/LibTorch | [Myyura](https://github.com/Myyura) |
22
+ | [YOLOv8 OpenCV INT8 TFLite Python](./YOLOv8-TFLite-Python) | Python | [Wamiq Raza](https://github.com/wamiqraza) |
23
+ | [YOLOv8 All Tasks ONNXRuntime Rust](./YOLOv8-ONNXRuntime-Rust) | Rust/ONNXRuntime | [jamjamjon](https://github.com/jamjamjon) |
24
+ | [YOLOv8 OpenVINO CPP](./YOLOv8-OpenVINO-CPP-Inference) | C++/OpenVINO | [Erlangga Yudi Pradana](https://github.com/rlggyp) |
25
+ | [YOLOv5-YOLO11 ONNXRuntime Rust](./YOLO-Series-ONNXRuntime-Rust) | Rust/ONNXRuntime | [jamjamjon](https://github.com/jamjamjon) |
26
+
27
+ ### How to Contribute
28
+
29
+ We greatly appreciate contributions from the community, including examples, applications, and guides. If you'd like to contribute, please follow these guidelines:
30
+
31
+ 1. **Create a pull request (PR)** with the title prefix `[Example]`, adding your new example folder to the `examples/` directory within the repository.
32
+ 2. **Ensure your project adheres to the following standards:**
33
+ - Makes use of the `ultralytics` package.
34
+ - Includes a `README.md` with clear instructions for setting up and running the example.
35
+ - Avoids adding large files or dependencies unless they are absolutely necessary for the example.
36
+ - Contributors should be willing to provide support for their examples and address related issues.
37
+
38
+ For more detailed information and guidance on contributing, please visit our [contribution documentation](https://docs.ultralytics.com/help/contributing/).
39
+
40
+ If you encounter any questions or concerns regarding these guidelines, feel free to open a PR or an issue in the repository, and we will assist you in the contribution process.
yolov12/examples/RTDETR-ONNXRuntime-Python/README.md ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # RTDETR - ONNX Runtime
2
+
3
+ This project implements RTDETR using ONNX Runtime.
4
+
5
+ ## Installation
6
+
7
+ To run this project, you need to install the required dependencies. The following instructions will guide you through the installation process.
8
+
9
+ ### Installing Required Dependencies
10
+
11
+ You can install the required dependencies by running the following command:
12
+
13
+ ```bash
14
+ pip install -r requirements.txt
15
+ ```
16
+
17
+ ### Installing `onnxruntime-gpu`
18
+
19
+ If you have an NVIDIA GPU and want to leverage GPU acceleration, you can install the onnxruntime-gpu package using the following command:
20
+
21
+ ```bash
22
+ pip install onnxruntime-gpu
23
+ ```
24
+
25
+ Note: Make sure you have the appropriate GPU drivers installed on your system.
26
+
27
+ ### Installing `onnxruntime` (CPU version)
28
+
29
+ If you don't have an NVIDIA GPU or prefer to use the CPU version of onnxruntime, you can install the onnxruntime package using the following command:
30
+
31
+ ```bash
32
+ pip install onnxruntime
33
+ ```
34
+
35
+ ### Usage
36
+
37
+ After successfully installing the required packages, you can run the RTDETR implementation using the following command:
38
+
39
+ ```bash
40
+ python main.py --model rtdetr-l.onnx --img image.jpg --conf-thres 0.5 --iou-thres 0.5
41
+ ```
42
+
43
+ Make sure to replace rtdetr-l.onnx with the path to your RTDETR ONNX model file, image.jpg with the path to your input image, and adjust the confidence threshold (conf-thres) and IoU threshold (iou-thres) values as needed.
yolov12/examples/RTDETR-ONNXRuntime-Python/main.py ADDED
@@ -0,0 +1,222 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
+
3
+ import argparse
4
+
5
+ import cv2
6
+ import numpy as np
7
+ import onnxruntime as ort
8
+ import torch
9
+
10
+ from ultralytics.utils import ASSETS, yaml_load
11
+ from ultralytics.utils.checks import check_requirements, check_yaml
12
+
13
+
14
+ class RTDETR:
15
+ """RTDETR object detection model class for handling inference and visualization."""
16
+
17
+ def __init__(self, model_path, img_path, conf_thres=0.5, iou_thres=0.5):
18
+ """
19
+ Initializes the RTDETR object with the specified parameters.
20
+
21
+ Args:
22
+ model_path: Path to the ONNX model file.
23
+ img_path: Path to the input image.
24
+ conf_thres: Confidence threshold for object detection.
25
+ iou_thres: IoU threshold for non-maximum suppression
26
+ """
27
+ self.model_path = model_path
28
+ self.img_path = img_path
29
+ self.conf_thres = conf_thres
30
+ self.iou_thres = iou_thres
31
+
32
+ # Set up the ONNX runtime session with CUDA and CPU execution providers
33
+ self.session = ort.InferenceSession(model_path, providers=["CUDAExecutionProvider", "CPUExecutionProvider"])
34
+ self.model_input = self.session.get_inputs()
35
+ self.input_width = self.model_input[0].shape[2]
36
+ self.input_height = self.model_input[0].shape[3]
37
+
38
+ # Load class names from the COCO dataset YAML file
39
+ self.classes = yaml_load(check_yaml("coco8.yaml"))["names"]
40
+
41
+ # Generate a color palette for drawing bounding boxes
42
+ self.color_palette = np.random.uniform(0, 255, size=(len(self.classes), 3))
43
+
44
+ def draw_detections(self, box, score, class_id):
45
+ """
46
+ Draws bounding boxes and labels on the input image based on the detected objects.
47
+
48
+ Args:
49
+ box: Detected bounding box.
50
+ score: Corresponding detection score.
51
+ class_id: Class ID for the detected object.
52
+
53
+ Returns:
54
+ None
55
+ """
56
+ # Extract the coordinates of the bounding box
57
+ x1, y1, x2, y2 = box
58
+
59
+ # Retrieve the color for the class ID
60
+ color = self.color_palette[class_id]
61
+
62
+ # Draw the bounding box on the image
63
+ cv2.rectangle(self.img, (int(x1), int(y1)), (int(x2), int(y2)), color, 2)
64
+
65
+ # Create the label text with class name and score
66
+ label = f"{self.classes[class_id]}: {score:.2f}"
67
+
68
+ # Calculate the dimensions of the label text
69
+ (label_width, label_height), _ = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1)
70
+
71
+ # Calculate the position of the label text
72
+ label_x = x1
73
+ label_y = y1 - 10 if y1 - 10 > label_height else y1 + 10
74
+
75
+ # Draw a filled rectangle as the background for the label text
76
+ cv2.rectangle(
77
+ self.img,
78
+ (int(label_x), int(label_y - label_height)),
79
+ (int(label_x + label_width), int(label_y + label_height)),
80
+ color,
81
+ cv2.FILLED,
82
+ )
83
+
84
+ # Draw the label text on the image
85
+ cv2.putText(
86
+ self.img, label, (int(label_x), int(label_y)), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0), 1, cv2.LINE_AA
87
+ )
88
+
89
+ def preprocess(self):
90
+ """
91
+ Preprocesses the input image before performing inference.
92
+
93
+ Returns:
94
+ image_data: Preprocessed image data ready for inference.
95
+ """
96
+ # Read the input image using OpenCV
97
+ self.img = cv2.imread(self.img_path)
98
+
99
+ # Get the height and width of the input image
100
+ self.img_height, self.img_width = self.img.shape[:2]
101
+
102
+ # Convert the image color space from BGR to RGB
103
+ img = cv2.cvtColor(self.img, cv2.COLOR_BGR2RGB)
104
+
105
+ # Resize the image to match the input shape
106
+ img = cv2.resize(img, (self.input_width, self.input_height))
107
+
108
+ # Normalize the image data by dividing it by 255.0
109
+ image_data = np.array(img) / 255.0
110
+
111
+ # Transpose the image to have the channel dimension as the first dimension
112
+ image_data = np.transpose(image_data, (2, 0, 1)) # Channel first
113
+
114
+ # Expand the dimensions of the image data to match the expected input shape
115
+ image_data = np.expand_dims(image_data, axis=0).astype(np.float32)
116
+
117
+ # Return the preprocessed image data
118
+ return image_data
119
+
120
+ def bbox_cxcywh_to_xyxy(self, boxes):
121
+ """
122
+ Converts bounding boxes from (center x, center y, width, height) format to (x_min, y_min, x_max, y_max) format.
123
+
124
+ Args:
125
+ boxes (numpy.ndarray): An array of shape (N, 4) where each row represents
126
+ a bounding box in (cx, cy, w, h) format.
127
+
128
+ Returns:
129
+ numpy.ndarray: An array of shape (N, 4) where each row represents
130
+ a bounding box in (x_min, y_min, x_max, y_max) format.
131
+ """
132
+ # Calculate half width and half height of the bounding boxes
133
+ half_width = boxes[:, 2] / 2
134
+ half_height = boxes[:, 3] / 2
135
+
136
+ # Calculate the coordinates of the bounding boxes
137
+ x_min = boxes[:, 0] - half_width
138
+ y_min = boxes[:, 1] - half_height
139
+ x_max = boxes[:, 0] + half_width
140
+ y_max = boxes[:, 1] + half_height
141
+
142
+ # Return the bounding boxes in (x_min, y_min, x_max, y_max) format
143
+ return np.column_stack((x_min, y_min, x_max, y_max))
144
+
145
+ def postprocess(self, model_output):
146
+ """
147
+ Postprocesses the model output to extract detections and draw them on the input image.
148
+
149
+ Args:
150
+ model_output: Output of the model inference.
151
+
152
+ Returns:
153
+ np.array: Annotated image with detections.
154
+ """
155
+ # Squeeze the model output to remove unnecessary dimensions
156
+ outputs = np.squeeze(model_output[0])
157
+
158
+ # Extract bounding boxes and scores from the model output
159
+ boxes = outputs[:, :4]
160
+ scores = outputs[:, 4:]
161
+
162
+ # Get the class labels and scores for each detection
163
+ labels = np.argmax(scores, axis=1)
164
+ scores = np.max(scores, axis=1)
165
+
166
+ # Apply confidence threshold to filter out low-confidence detections
167
+ mask = scores > self.conf_thres
168
+ boxes, scores, labels = boxes[mask], scores[mask], labels[mask]
169
+
170
+ # Convert bounding boxes to (x_min, y_min, x_max, y_max) format
171
+ boxes = self.bbox_cxcywh_to_xyxy(boxes)
172
+
173
+ # Scale bounding boxes to match the original image dimensions
174
+ boxes[:, 0::2] *= self.img_width
175
+ boxes[:, 1::2] *= self.img_height
176
+
177
+ # Draw detections on the image
178
+ for box, score, label in zip(boxes, scores, labels):
179
+ self.draw_detections(box, score, label)
180
+
181
+ # Return the annotated image
182
+ return self.img
183
+
184
+ def main(self):
185
+ """
186
+ Executes the detection on the input image using the ONNX model.
187
+
188
+ Returns:
189
+ np.array: Output image with annotations.
190
+ """
191
+ # Preprocess the image for model input
192
+ image_data = self.preprocess()
193
+
194
+ # Run the model inference
195
+ model_output = self.session.run(None, {self.model_input[0].name: image_data})
196
+
197
+ # Process and return the model output
198
+ return self.postprocess(model_output)
199
+
200
+
201
+ if __name__ == "__main__":
202
+ # Set up argument parser for command-line arguments
203
+ parser = argparse.ArgumentParser()
204
+ parser.add_argument("--model", type=str, default="rtdetr-l.onnx", help="Path to the ONNX model file.")
205
+ parser.add_argument("--img", type=str, default=str(ASSETS / "bus.jpg"), help="Path to the input image.")
206
+ parser.add_argument("--conf-thres", type=float, default=0.5, help="Confidence threshold for object detection.")
207
+ parser.add_argument("--iou-thres", type=float, default=0.5, help="IoU threshold for non-maximum suppression.")
208
+ args = parser.parse_args()
209
+
210
+ # Check for dependencies and set up ONNX runtime
211
+ check_requirements("onnxruntime-gpu" if torch.cuda.is_available() else "onnxruntime")
212
+
213
+ # Create the detector instance with specified parameters
214
+ detection = RTDETR(args.model, args.img, args.conf_thres, args.iou_thres)
215
+
216
+ # Perform detection and get the output image
217
+ output_image = detection.main()
218
+
219
+ # Display the annotated output image
220
+ cv2.namedWindow("Output", cv2.WINDOW_NORMAL)
221
+ cv2.imshow("Output", output_image)
222
+ cv2.waitKey(0)
yolov12/examples/YOLO-Series-ONNXRuntime-Rust/Cargo.toml ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
+
3
+ [package]
4
+ name = "YOLO-ONNXRuntime-Rust"
5
+ version = "0.1.0"
6
+ edition = "2021"
7
+ authors = ["Jamjamjon <[email protected]>"]
8
+
9
+ [dependencies]
10
+ anyhow = "1.0.92"
11
+ clap = "4.5.20"
12
+ tracing = "0.1.40"
13
+ tracing-subscriber = "0.3.18"
14
+ usls = { version = "0.0.19", features = ["auto"] }
yolov12/examples/YOLO-Series-ONNXRuntime-Rust/README.md ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLO-Series ONNXRuntime Rust Demo for Core YOLO Tasks
2
+
3
+ This repository provides a Rust demo for key YOLO-Series tasks such as `Classification`, `Segmentation`, `Detection`, `Pose Detection`, and `OBB` using ONNXRuntime. It supports various YOLO models (v5 - 11) across multiple vision tasks.
4
+
5
+ ## Introduction
6
+
7
+ - This example leverages the latest versions of both ONNXRuntime and YOLO models.
8
+ - We utilize the [usls](https://github.com/jamjamjon/usls/tree/main) crate to streamline YOLO model inference, providing efficient data loading, visualization, and optimized inference performance.
9
+
10
+ ## Features
11
+
12
+ - **Extensive Model Compatibility**: Supports `YOLOv5`, `YOLOv6`, `YOLOv7`, `YOLOv8`, `YOLOv9`, `YOLOv10`, `YOLO11`, `YOLO-world`, `RTDETR`, and others, covering a wide range of YOLO versions.
13
+ - **Versatile Task Coverage**: Includes `Classification`, `Segmentation`, `Detection`, `Pose`, and `OBB`.
14
+ - **Precision Flexibility**: Works with `FP16` and `FP32` ONNX models.
15
+ - **Execution Providers**: Accelerated support for `CPU`, `CUDA`, `CoreML`, and `TensorRT`.
16
+ - **Dynamic Input Shapes**: Dynamically adjusts to variable `batch`, `width`, and `height` dimensions for flexible model input.
17
+ - **Flexible Data Loading**: The `DataLoader` handles images, folders, videos, and video streams.
18
+ - **Real-Time Display and Video Export**: `Viewer` provides real-time frame visualization and video export functions, similar to OpenCV’s `imshow()` and `imwrite()`.
19
+ - **Enhanced Annotation and Visualization**: The `Annotator` facilitates comprehensive result rendering, with support for bounding boxes (HBB), oriented bounding boxes (OBB), polygons, masks, keypoints, and text labels.
20
+
21
+ ## Setup Instructions
22
+
23
+ ### 1. ONNXRuntime Linking
24
+
25
+ <details>
26
+ <summary>You have two options to link the ONNXRuntime library:</summary>
27
+
28
+ - **Option 1: Manual Linking**
29
+
30
+ - For detailed setup, consult the [ONNX Runtime linking documentation](https://ort.pyke.io/setup/linking).
31
+ - **Linux or macOS**:
32
+ 1. Download the ONNX Runtime package from the [Releases page](https://github.com/microsoft/onnxruntime/releases).
33
+ 2. Set up the library path by exporting the `ORT_DYLIB_PATH` environment variable:
34
+ ```shell
35
+ export ORT_DYLIB_PATH=/path/to/onnxruntime/lib/libonnxruntime.so.1.19.0
36
+ ```
37
+
38
+ - **Option 2: Automatic Download**
39
+ - Use the `--features auto` flag to handle downloading automatically:
40
+ ```shell
41
+ cargo run -r --example yolo --features auto
42
+ ```
43
+
44
+ </details>
45
+
46
+ ### 2. \[Optional\] Install CUDA, CuDNN, and TensorRT
47
+
48
+ - The CUDA execution provider requires CUDA version `12.x`.
49
+ - The TensorRT execution provider requires both CUDA `12.x` and TensorRT `10.x`.
50
+
51
+ ### 3. \[Optional\] Install ffmpeg
52
+
53
+ To view video frames and save video inferences, install `rust-ffmpeg`. For instructions, see:
54
+ [https://github.com/zmwangx/rust-ffmpeg/wiki/Notes-on-building#dependencies](https://github.com/zmwangx/rust-ffmpeg/wiki/Notes-on-building#dependencies)
55
+
56
+ ## Get Started
57
+
58
+ ```Shell
59
+ # customized
60
+ cargo run -r -- --task detect --ver v8 --nc 6 --model xxx.onnx # YOLOv8
61
+
62
+ # Classify
63
+ cargo run -r -- --task classify --ver v5 --scale s --width 224 --height 224 --nc 1000 # YOLOv5
64
+ cargo run -r -- --task classify --ver v8 --scale n --width 224 --height 224 --nc 1000 # YOLOv8
65
+ cargo run -r -- --task classify --ver v11 --scale n --width 224 --height 224 --nc 1000 # YOLO11
66
+
67
+ # Detect
68
+ cargo run -r -- --task detect --ver v5 --scale n # YOLOv5
69
+ cargo run -r -- --task detect --ver v6 --scale n # YOLOv6
70
+ cargo run -r -- --task detect --ver v7 --scale t # YOLOv7
71
+ cargo run -r -- --task detect --ver v8 --scale n # YOLOv8
72
+ cargo run -r -- --task detect --ver v9 --scale t # YOLOv9
73
+ cargo run -r -- --task detect --ver v10 --scale n # YOLOv10
74
+ cargo run -r -- --task detect --ver v11 --scale n # YOLO11
75
+ cargo run -r -- --task detect --ver rtdetr --scale l # RTDETR
76
+
77
+ # Pose
78
+ cargo run -r -- --task pose --ver v8 --scale n # YOLOv8-Pose
79
+ cargo run -r -- --task pose --ver v11 --scale n # YOLO11-Pose
80
+
81
+ # Segment
82
+ cargo run -r -- --task segment --ver v5 --scale n # YOLOv5-Segment
83
+ cargo run -r -- --task segment --ver v8 --scale n # YOLOv8-Segment
84
+ cargo run -r -- --task segment --ver v11 --scale n # YOLOv8-Segment
85
+ cargo run -r -- --task segment --ver v8 --model yolo/FastSAM-s-dyn-f16.onnx # FastSAM
86
+
87
+ # OBB
88
+ cargo run -r -- --ver v8 --task obb --scale n --width 1024 --height 1024 --source images/dota.png # YOLOv8-Obb
89
+ cargo run -r -- --ver v11 --task obb --scale n --width 1024 --height 1024 --source images/dota.png # YOLO11-Obb
90
+ ```
91
+
92
+ **`cargo run -- --help` for more options**
93
+
94
+ For more details, please refer to [usls-yolo](https://github.com/jamjamjon/usls/tree/main/examples/yolo).
yolov12/examples/YOLO-Series-ONNXRuntime-Rust/src/main.rs ADDED
@@ -0,0 +1,236 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ use anyhow::Result;
2
+ use clap::Parser;
3
+
4
+ use usls::{
5
+ models::YOLO, Annotator, DataLoader, Device, Options, Viewer, Vision, YOLOScale, YOLOTask,
6
+ YOLOVersion, COCO_SKELETONS_16,
7
+ };
8
+
9
+ #[derive(Parser, Clone)]
10
+ #[command(author, version, about, long_about = None)]
11
+ pub struct Args {
12
+ /// Path to the ONNX model
13
+ #[arg(long)]
14
+ pub model: Option<String>,
15
+
16
+ /// Input source path
17
+ #[arg(long, default_value_t = String::from("../../ultralytics/assets/bus.jpg"))]
18
+ pub source: String,
19
+
20
+ /// YOLO Task
21
+ #[arg(long, value_enum, default_value_t = YOLOTask::Detect)]
22
+ pub task: YOLOTask,
23
+
24
+ /// YOLO Version
25
+ #[arg(long, value_enum, default_value_t = YOLOVersion::V8)]
26
+ pub ver: YOLOVersion,
27
+
28
+ /// YOLO Scale
29
+ #[arg(long, value_enum, default_value_t = YOLOScale::N)]
30
+ pub scale: YOLOScale,
31
+
32
+ /// Batch size
33
+ #[arg(long, default_value_t = 1)]
34
+ pub batch_size: usize,
35
+
36
+ /// Minimum input width
37
+ #[arg(long, default_value_t = 224)]
38
+ pub width_min: isize,
39
+
40
+ /// Input width
41
+ #[arg(long, default_value_t = 640)]
42
+ pub width: isize,
43
+
44
+ /// Maximum input width
45
+ #[arg(long, default_value_t = 1024)]
46
+ pub width_max: isize,
47
+
48
+ /// Minimum input height
49
+ #[arg(long, default_value_t = 224)]
50
+ pub height_min: isize,
51
+
52
+ /// Input height
53
+ #[arg(long, default_value_t = 640)]
54
+ pub height: isize,
55
+
56
+ /// Maximum input height
57
+ #[arg(long, default_value_t = 1024)]
58
+ pub height_max: isize,
59
+
60
+ /// Number of classes
61
+ #[arg(long, default_value_t = 80)]
62
+ pub nc: usize,
63
+
64
+ /// Class confidence
65
+ #[arg(long)]
66
+ pub confs: Vec<f32>,
67
+
68
+ /// Enable TensorRT support
69
+ #[arg(long)]
70
+ pub trt: bool,
71
+
72
+ /// Enable CUDA support
73
+ #[arg(long)]
74
+ pub cuda: bool,
75
+
76
+ /// Enable CoreML support
77
+ #[arg(long)]
78
+ pub coreml: bool,
79
+
80
+ /// Use TensorRT half precision
81
+ #[arg(long)]
82
+ pub half: bool,
83
+
84
+ /// Device ID to use
85
+ #[arg(long, default_value_t = 0)]
86
+ pub device_id: usize,
87
+
88
+ /// Enable performance profiling
89
+ #[arg(long)]
90
+ pub profile: bool,
91
+
92
+ /// Disable contour drawing, for saving time
93
+ #[arg(long)]
94
+ pub no_contours: bool,
95
+
96
+ /// Show result
97
+ #[arg(long)]
98
+ pub view: bool,
99
+
100
+ /// Do not save output
101
+ #[arg(long)]
102
+ pub nosave: bool,
103
+ }
104
+
105
+ fn main() -> Result<()> {
106
+ let args = Args::parse();
107
+
108
+ // logger
109
+ if args.profile {
110
+ tracing_subscriber::fmt()
111
+ .with_max_level(tracing::Level::INFO)
112
+ .init();
113
+ }
114
+
115
+ // model path
116
+ let path = match &args.model {
117
+ None => format!(
118
+ "yolo/{}-{}-{}.onnx",
119
+ args.ver.name(),
120
+ args.scale.name(),
121
+ args.task.name()
122
+ ),
123
+ Some(x) => x.to_string(),
124
+ };
125
+
126
+ // saveout
127
+ let saveout = match &args.model {
128
+ None => format!(
129
+ "{}-{}-{}",
130
+ args.ver.name(),
131
+ args.scale.name(),
132
+ args.task.name()
133
+ ),
134
+ Some(x) => {
135
+ let p = std::path::PathBuf::from(&x);
136
+ p.file_stem().unwrap().to_str().unwrap().to_string()
137
+ }
138
+ };
139
+
140
+ // device
141
+ let device = if args.cuda {
142
+ Device::Cuda(args.device_id)
143
+ } else if args.trt {
144
+ Device::Trt(args.device_id)
145
+ } else if args.coreml {
146
+ Device::CoreML(args.device_id)
147
+ } else {
148
+ Device::Cpu(args.device_id)
149
+ };
150
+
151
+ // build options
152
+ let options = Options::new()
153
+ .with_model(&path)?
154
+ .with_yolo_version(args.ver)
155
+ .with_yolo_task(args.task)
156
+ .with_device(device)
157
+ .with_trt_fp16(args.half)
158
+ .with_ixx(0, 0, (1, args.batch_size as _, 4).into())
159
+ .with_ixx(0, 2, (args.height_min, args.height, args.height_max).into())
160
+ .with_ixx(0, 3, (args.width_min, args.width, args.width_max).into())
161
+ .with_confs(if args.confs.is_empty() {
162
+ &[0.2, 0.15]
163
+ } else {
164
+ &args.confs
165
+ })
166
+ .with_nc(args.nc)
167
+ .with_find_contours(!args.no_contours) // find contours or not
168
+ // .with_names(&COCO_CLASS_NAMES_80) // detection class names
169
+ // .with_names2(&COCO_KEYPOINTS_17) // keypoints class names
170
+ // .exclude_classes(&[0])
171
+ // .retain_classes(&[0, 5])
172
+ .with_profile(args.profile);
173
+
174
+ // build model
175
+ let mut model = YOLO::new(options)?;
176
+
177
+ // build dataloader
178
+ let dl = DataLoader::new(&args.source)?
179
+ .with_batch(model.batch() as _)
180
+ .build()?;
181
+
182
+ // build annotator
183
+ let annotator = Annotator::default()
184
+ .with_skeletons(&COCO_SKELETONS_16)
185
+ .without_masks(true) // no masks plotting when doing segment task
186
+ .with_bboxes_thickness(3)
187
+ .with_keypoints_name(false) // enable keypoints names
188
+ .with_saveout_subs(&["YOLO"])
189
+ .with_saveout(&saveout);
190
+
191
+ // build viewer
192
+ let mut viewer = if args.view {
193
+ Some(Viewer::new().with_delay(5).with_scale(1.).resizable(true))
194
+ } else {
195
+ None
196
+ };
197
+
198
+ // run & annotate
199
+ for (xs, _paths) in dl {
200
+ let ys = model.forward(&xs, args.profile)?;
201
+ let images_plotted = annotator.plot(&xs, &ys, !args.nosave)?;
202
+
203
+ // show image
204
+ match &mut viewer {
205
+ Some(viewer) => viewer.imshow(&images_plotted)?,
206
+ None => continue,
207
+ }
208
+
209
+ // check out window and key event
210
+ match &mut viewer {
211
+ Some(viewer) => {
212
+ if !viewer.is_open() || viewer.is_key_pressed(usls::Key::Escape) {
213
+ break;
214
+ }
215
+ }
216
+ None => continue,
217
+ }
218
+
219
+ // write video
220
+ if !args.nosave {
221
+ match &mut viewer {
222
+ Some(viewer) => viewer.write_batch(&images_plotted)?,
223
+ None => continue,
224
+ }
225
+ }
226
+ }
227
+
228
+ // finish video write
229
+ if !args.nosave {
230
+ if let Some(viewer) = &mut viewer {
231
+ viewer.finish_write()?;
232
+ }
233
+ }
234
+
235
+ Ok(())
236
+ }
yolov12/examples/YOLOv8-Action-Recognition/action_recognition.py ADDED
@@ -0,0 +1,464 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
+
3
+ import argparse
4
+ import time
5
+ from collections import defaultdict
6
+ from typing import List, Optional, Tuple
7
+ from urllib.parse import urlparse
8
+
9
+ import cv2
10
+ import numpy as np
11
+ import torch
12
+ from transformers import AutoModel, AutoProcessor
13
+
14
+ from ultralytics import YOLO
15
+ from ultralytics.data.loaders import get_best_youtube_url
16
+ from ultralytics.utils.plotting import Annotator
17
+ from ultralytics.utils.torch_utils import select_device
18
+
19
+
20
+ class TorchVisionVideoClassifier:
21
+ """Classifies videos using pretrained TorchVision models; see https://pytorch.org/vision/stable/."""
22
+
23
+ from torchvision.models.video import (
24
+ MViT_V1_B_Weights,
25
+ MViT_V2_S_Weights,
26
+ R3D_18_Weights,
27
+ S3D_Weights,
28
+ Swin3D_B_Weights,
29
+ Swin3D_T_Weights,
30
+ mvit_v1_b,
31
+ mvit_v2_s,
32
+ r3d_18,
33
+ s3d,
34
+ swin3d_b,
35
+ swin3d_t,
36
+ )
37
+
38
+ model_name_to_model_and_weights = {
39
+ "s3d": (s3d, S3D_Weights.DEFAULT),
40
+ "r3d_18": (r3d_18, R3D_18_Weights.DEFAULT),
41
+ "swin3d_t": (swin3d_t, Swin3D_T_Weights.DEFAULT),
42
+ "swin3d_b": (swin3d_b, Swin3D_B_Weights.DEFAULT),
43
+ "mvit_v1_b": (mvit_v1_b, MViT_V1_B_Weights.DEFAULT),
44
+ "mvit_v2_s": (mvit_v2_s, MViT_V2_S_Weights.DEFAULT),
45
+ }
46
+
47
+ def __init__(self, model_name: str, device: str or torch.device = ""):
48
+ """
49
+ Initialize the VideoClassifier with the specified model name and device.
50
+
51
+ Args:
52
+ model_name (str): The name of the model to use.
53
+ device (str or torch.device, optional): The device to run the model on. Defaults to "".
54
+
55
+ Raises:
56
+ ValueError: If an invalid model name is provided.
57
+ """
58
+ if model_name not in self.model_name_to_model_and_weights:
59
+ raise ValueError(f"Invalid model name '{model_name}'. Available models: {self.available_model_names()}")
60
+ model, self.weights = self.model_name_to_model_and_weights[model_name]
61
+ self.device = select_device(device)
62
+ self.model = model(weights=self.weights).to(self.device).eval()
63
+
64
+ @staticmethod
65
+ def available_model_names() -> List[str]:
66
+ """
67
+ Get the list of available model names.
68
+
69
+ Returns:
70
+ list: List of available model names.
71
+ """
72
+ return list(TorchVisionVideoClassifier.model_name_to_model_and_weights.keys())
73
+
74
+ def preprocess_crops_for_video_cls(self, crops: List[np.ndarray], input_size: list = None) -> torch.Tensor:
75
+ """
76
+ Preprocess a list of crops for video classification.
77
+
78
+ Args:
79
+ crops (List[np.ndarray]): List of crops to preprocess. Each crop should have dimensions (H, W, C)
80
+ input_size (tuple, optional): The target input size for the model. Defaults to (224, 224).
81
+
82
+ Returns:
83
+ torch.Tensor: Preprocessed crops as a tensor with dimensions (1, T, C, H, W).
84
+ """
85
+ if input_size is None:
86
+ input_size = [224, 224]
87
+ from torchvision.transforms import v2
88
+
89
+ transform = v2.Compose(
90
+ [
91
+ v2.ToDtype(torch.float32, scale=True),
92
+ v2.Resize(input_size, antialias=True),
93
+ v2.Normalize(mean=self.weights.transforms().mean, std=self.weights.transforms().std),
94
+ ]
95
+ )
96
+
97
+ processed_crops = [transform(torch.from_numpy(crop).permute(2, 0, 1)) for crop in crops]
98
+ return torch.stack(processed_crops).unsqueeze(0).permute(0, 2, 1, 3, 4).to(self.device)
99
+
100
+ def __call__(self, sequences: torch.Tensor):
101
+ """
102
+ Perform inference on the given sequences.
103
+
104
+ Args:
105
+ sequences (torch.Tensor): The input sequences for the model. The expected input dimensions are
106
+ (B, T, C, H, W) for batched video frames or (T, C, H, W) for single video frames.
107
+
108
+ Returns:
109
+ torch.Tensor: The model's output.
110
+ """
111
+ with torch.inference_mode():
112
+ return self.model(sequences)
113
+
114
+ def postprocess(self, outputs: torch.Tensor) -> Tuple[List[str], List[float]]:
115
+ """
116
+ Postprocess the model's batch output.
117
+
118
+ Args:
119
+ outputs (torch.Tensor): The model's output.
120
+
121
+ Returns:
122
+ List[str]: The predicted labels.
123
+ List[float]: The predicted confidences.
124
+ """
125
+ pred_labels = []
126
+ pred_confs = []
127
+ for output in outputs:
128
+ pred_class = output.argmax(0).item()
129
+ pred_label = self.weights.meta["categories"][pred_class]
130
+ pred_labels.append(pred_label)
131
+ pred_conf = output.softmax(0)[pred_class].item()
132
+ pred_confs.append(pred_conf)
133
+
134
+ return pred_labels, pred_confs
135
+
136
+
137
+ class HuggingFaceVideoClassifier:
138
+ """Zero-shot video classifier using Hugging Face models for various devices."""
139
+
140
+ def __init__(
141
+ self,
142
+ labels: List[str],
143
+ model_name: str = "microsoft/xclip-base-patch16-zero-shot",
144
+ device: str or torch.device = "",
145
+ fp16: bool = False,
146
+ ):
147
+ """
148
+ Initialize the HuggingFaceVideoClassifier with the specified model name.
149
+
150
+ Args:
151
+ labels (List[str]): List of labels for zero-shot classification.
152
+ model_name (str): The name of the model to use. Defaults to "microsoft/xclip-base-patch16-zero-shot".
153
+ device (str or torch.device, optional): The device to run the model on. Defaults to "".
154
+ fp16 (bool, optional): Whether to use FP16 for inference. Defaults to False.
155
+ """
156
+ self.fp16 = fp16
157
+ self.labels = labels
158
+ self.device = select_device(device)
159
+ self.processor = AutoProcessor.from_pretrained(model_name)
160
+ model = AutoModel.from_pretrained(model_name).to(self.device)
161
+ if fp16:
162
+ model = model.half()
163
+ self.model = model.eval()
164
+
165
+ def preprocess_crops_for_video_cls(self, crops: List[np.ndarray], input_size: list = None) -> torch.Tensor:
166
+ """
167
+ Preprocess a list of crops for video classification.
168
+
169
+ Args:
170
+ crops (List[np.ndarray]): List of crops to preprocess. Each crop should have dimensions (H, W, C)
171
+ input_size (tuple, optional): The target input size for the model. Defaults to (224, 224).
172
+
173
+ Returns:
174
+ torch.Tensor: Preprocessed crops as a tensor (1, T, C, H, W).
175
+ """
176
+ if input_size is None:
177
+ input_size = [224, 224]
178
+ from torchvision import transforms
179
+
180
+ transform = transforms.Compose(
181
+ [
182
+ transforms.Lambda(lambda x: x.float() / 255.0),
183
+ transforms.Resize(input_size),
184
+ transforms.Normalize(
185
+ mean=self.processor.image_processor.image_mean, std=self.processor.image_processor.image_std
186
+ ),
187
+ ]
188
+ )
189
+
190
+ processed_crops = [transform(torch.from_numpy(crop).permute(2, 0, 1)) for crop in crops] # (T, C, H, W)
191
+ output = torch.stack(processed_crops).unsqueeze(0).to(self.device) # (1, T, C, H, W)
192
+ if self.fp16:
193
+ output = output.half()
194
+ return output
195
+
196
+ def __call__(self, sequences: torch.Tensor) -> torch.Tensor:
197
+ """
198
+ Perform inference on the given sequences.
199
+
200
+ Args:
201
+ sequences (torch.Tensor): The input sequences for the model. Batched video frames with shape (B, T, H, W, C).
202
+
203
+ Returns:
204
+ torch.Tensor: The model's output.
205
+ """
206
+ input_ids = self.processor(text=self.labels, return_tensors="pt", padding=True)["input_ids"].to(self.device)
207
+
208
+ inputs = {"pixel_values": sequences, "input_ids": input_ids}
209
+
210
+ with torch.inference_mode():
211
+ outputs = self.model(**inputs)
212
+
213
+ return outputs.logits_per_video
214
+
215
+ def postprocess(self, outputs: torch.Tensor) -> Tuple[List[List[str]], List[List[float]]]:
216
+ """
217
+ Postprocess the model's batch output.
218
+
219
+ Args:
220
+ outputs (torch.Tensor): The model's output.
221
+
222
+ Returns:
223
+ List[List[str]]: The predicted top3 labels.
224
+ List[List[float]]: The predicted top3 confidences.
225
+ """
226
+ pred_labels = []
227
+ pred_confs = []
228
+
229
+ with torch.no_grad():
230
+ logits_per_video = outputs # Assuming outputs is already the logits tensor
231
+ probs = logits_per_video.softmax(dim=-1) # Use softmax to convert logits to probabilities
232
+
233
+ for prob in probs:
234
+ top2_indices = prob.topk(2).indices.tolist()
235
+ top2_labels = [self.labels[idx] for idx in top2_indices]
236
+ top2_confs = prob[top2_indices].tolist()
237
+ pred_labels.append(top2_labels)
238
+ pred_confs.append(top2_confs)
239
+
240
+ return pred_labels, pred_confs
241
+
242
+
243
+ def crop_and_pad(frame, box, margin_percent):
244
+ """Crop box with margin and take square crop from frame."""
245
+ x1, y1, x2, y2 = map(int, box)
246
+ w, h = x2 - x1, y2 - y1
247
+
248
+ # Add margin
249
+ margin_x, margin_y = int(w * margin_percent / 100), int(h * margin_percent / 100)
250
+ x1, y1 = max(0, x1 - margin_x), max(0, y1 - margin_y)
251
+ x2, y2 = min(frame.shape[1], x2 + margin_x), min(frame.shape[0], y2 + margin_y)
252
+
253
+ # Take square crop from frame
254
+ size = max(y2 - y1, x2 - x1)
255
+ center_y, center_x = (y1 + y2) // 2, (x1 + x2) // 2
256
+ half_size = size // 2
257
+ square_crop = frame[
258
+ max(0, center_y - half_size) : min(frame.shape[0], center_y + half_size),
259
+ max(0, center_x - half_size) : min(frame.shape[1], center_x + half_size),
260
+ ]
261
+
262
+ return cv2.resize(square_crop, (224, 224), interpolation=cv2.INTER_LINEAR)
263
+
264
+
265
+ def run(
266
+ weights: str = "yolo11n.pt",
267
+ device: str = "",
268
+ source: str = "https://www.youtube.com/watch?v=dQw4w9WgXcQ",
269
+ output_path: Optional[str] = None,
270
+ crop_margin_percentage: int = 10,
271
+ num_video_sequence_samples: int = 8,
272
+ skip_frame: int = 2,
273
+ video_cls_overlap_ratio: float = 0.25,
274
+ fp16: bool = False,
275
+ video_classifier_model: str = "microsoft/xclip-base-patch32",
276
+ labels: List[str] = None,
277
+ ) -> None:
278
+ """
279
+ Run action recognition on a video source using YOLO for object detection and a video classifier.
280
+
281
+ Args:
282
+ weights (str): Path to the YOLO model weights. Defaults to "yolo11n.pt".
283
+ device (str): Device to run the model on. Use 'cuda' for NVIDIA GPU, 'mps' for Apple Silicon, or 'cpu'. Defaults to auto-detection.
284
+ source (str): Path to mp4 video file or YouTube URL. Defaults to a sample YouTube video.
285
+ output_path (Optional[str], optional): Path to save the output video. Defaults to None.
286
+ crop_margin_percentage (int, optional): Percentage of margin to add around detected objects. Defaults to 10.
287
+ num_video_sequence_samples (int, optional): Number of video frames to use for classification. Defaults to 8.
288
+ skip_frame (int, optional): Number of frames to skip between detections. Defaults to 4.
289
+ video_cls_overlap_ratio (float, optional): Overlap ratio between video sequences. Defaults to 0.25.
290
+ fp16 (bool, optional): Whether to use half-precision floating point. Defaults to False.
291
+ video_classifier_model (str, optional): Name or path of the video classifier model. Defaults to "microsoft/xclip-base-patch32".
292
+ labels (List[str], optional): List of labels for zero-shot classification. Defaults to predefined list.
293
+
294
+ Returns:
295
+ None</edit>
296
+ """
297
+ if labels is None:
298
+ labels = [
299
+ "walking",
300
+ "running",
301
+ "brushing teeth",
302
+ "looking into phone",
303
+ "weight lifting",
304
+ "cooking",
305
+ "sitting",
306
+ ]
307
+ # Initialize models and device
308
+ device = select_device(device)
309
+ yolo_model = YOLO(weights).to(device)
310
+ if video_classifier_model in TorchVisionVideoClassifier.available_model_names():
311
+ print("'fp16' is not supported for TorchVisionVideoClassifier. Setting fp16 to False.")
312
+ print(
313
+ "'labels' is not used for TorchVisionVideoClassifier. Ignoring the provided labels and using Kinetics-400 labels."
314
+ )
315
+ video_classifier = TorchVisionVideoClassifier(video_classifier_model, device=device)
316
+ else:
317
+ video_classifier = HuggingFaceVideoClassifier(
318
+ labels, model_name=video_classifier_model, device=device, fp16=fp16
319
+ )
320
+
321
+ # Initialize video capture
322
+ if source.startswith("http") and urlparse(source).hostname in {"www.youtube.com", "youtube.com", "youtu.be"}:
323
+ source = get_best_youtube_url(source)
324
+ elif not source.endswith(".mp4"):
325
+ raise ValueError("Invalid source. Supported sources are YouTube URLs and MP4 files.")
326
+ cap = cv2.VideoCapture(source)
327
+
328
+ # Get video properties
329
+ frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
330
+ frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
331
+ fps = cap.get(cv2.CAP_PROP_FPS)
332
+
333
+ # Initialize VideoWriter
334
+ if output_path is not None:
335
+ fourcc = cv2.VideoWriter_fourcc(*"mp4v")
336
+ out = cv2.VideoWriter(output_path, fourcc, fps, (frame_width, frame_height))
337
+
338
+ # Initialize track history
339
+ track_history = defaultdict(list)
340
+ frame_counter = 0
341
+
342
+ track_ids_to_infer = []
343
+ crops_to_infer = []
344
+ pred_labels = []
345
+ pred_confs = []
346
+
347
+ while cap.isOpened():
348
+ success, frame = cap.read()
349
+ if not success:
350
+ break
351
+
352
+ frame_counter += 1
353
+
354
+ # Run YOLO tracking
355
+ results = yolo_model.track(frame, persist=True, classes=[0]) # Track only person class
356
+
357
+ if results[0].boxes.id is not None:
358
+ boxes = results[0].boxes.xyxy.cpu().numpy()
359
+ track_ids = results[0].boxes.id.cpu().numpy()
360
+
361
+ # Visualize prediction
362
+ annotator = Annotator(frame, line_width=3, font_size=10, pil=False)
363
+
364
+ if frame_counter % skip_frame == 0:
365
+ crops_to_infer = []
366
+ track_ids_to_infer = []
367
+
368
+ for box, track_id in zip(boxes, track_ids):
369
+ if frame_counter % skip_frame == 0:
370
+ crop = crop_and_pad(frame, box, crop_margin_percentage)
371
+ track_history[track_id].append(crop)
372
+
373
+ if len(track_history[track_id]) > num_video_sequence_samples:
374
+ track_history[track_id].pop(0)
375
+
376
+ if len(track_history[track_id]) == num_video_sequence_samples and frame_counter % skip_frame == 0:
377
+ start_time = time.time()
378
+ crops = video_classifier.preprocess_crops_for_video_cls(track_history[track_id])
379
+ end_time = time.time()
380
+ preprocess_time = end_time - start_time
381
+ print(f"video cls preprocess time: {preprocess_time:.4f} seconds")
382
+ crops_to_infer.append(crops)
383
+ track_ids_to_infer.append(track_id)
384
+
385
+ if crops_to_infer and (
386
+ not pred_labels
387
+ or frame_counter % int(num_video_sequence_samples * skip_frame * (1 - video_cls_overlap_ratio)) == 0
388
+ ):
389
+ crops_batch = torch.cat(crops_to_infer, dim=0)
390
+
391
+ start_inference_time = time.time()
392
+ output_batch = video_classifier(crops_batch)
393
+ end_inference_time = time.time()
394
+ inference_time = end_inference_time - start_inference_time
395
+ print(f"video cls inference time: {inference_time:.4f} seconds")
396
+
397
+ pred_labels, pred_confs = video_classifier.postprocess(output_batch)
398
+
399
+ if track_ids_to_infer and crops_to_infer:
400
+ for box, track_id, pred_label, pred_conf in zip(boxes, track_ids_to_infer, pred_labels, pred_confs):
401
+ top2_preds = sorted(zip(pred_label, pred_conf), key=lambda x: x[1], reverse=True)
402
+ label_text = " | ".join([f"{label} ({conf:.2f})" for label, conf in top2_preds])
403
+ annotator.box_label(box, label_text, color=(0, 0, 255))
404
+
405
+ # Write the annotated frame to the output video
406
+ if output_path is not None:
407
+ out.write(frame)
408
+
409
+ # Display the annotated frame
410
+ cv2.imshow("YOLOv8 Tracking with S3D Classification", frame)
411
+
412
+ if cv2.waitKey(1) & 0xFF == ord("q"):
413
+ break
414
+
415
+ cap.release()
416
+ if output_path is not None:
417
+ out.release()
418
+ cv2.destroyAllWindows()
419
+
420
+
421
+ def parse_opt():
422
+ """Parse command line arguments."""
423
+ parser = argparse.ArgumentParser()
424
+ parser.add_argument("--weights", type=str, default="yolo11n.pt", help="ultralytics detector model path")
425
+ parser.add_argument("--device", default="", help='cuda device, i.e. 0 or 0,1,2,3 or cpu/mps, "" for auto-detection')
426
+ parser.add_argument(
427
+ "--source",
428
+ type=str,
429
+ default="https://www.youtube.com/watch?v=dQw4w9WgXcQ",
430
+ help="video file path or youtube URL",
431
+ )
432
+ parser.add_argument("--output-path", type=str, default="output_video.mp4", help="output video file path")
433
+ parser.add_argument(
434
+ "--crop-margin-percentage", type=int, default=10, help="percentage of margin to add around detected objects"
435
+ )
436
+ parser.add_argument(
437
+ "--num-video-sequence-samples", type=int, default=8, help="number of video frames to use for classification"
438
+ )
439
+ parser.add_argument("--skip-frame", type=int, default=2, help="number of frames to skip between detections")
440
+ parser.add_argument(
441
+ "--video-cls-overlap-ratio", type=float, default=0.25, help="overlap ratio between video sequences"
442
+ )
443
+ parser.add_argument("--fp16", action="store_true", help="use FP16 for inference")
444
+ parser.add_argument(
445
+ "--video-classifier-model", type=str, default="microsoft/xclip-base-patch32", help="video classifier model name"
446
+ )
447
+ parser.add_argument(
448
+ "--labels",
449
+ nargs="+",
450
+ type=str,
451
+ default=["dancing", "singing a song"],
452
+ help="labels for zero-shot video classification",
453
+ )
454
+ return parser.parse_args()
455
+
456
+
457
+ def main(opt):
458
+ """Main function."""
459
+ run(**vars(opt))
460
+
461
+
462
+ if __name__ == "__main__":
463
+ opt = parse_opt()
464
+ main(opt)
yolov12/examples/YOLOv8-Action-Recognition/readme.md ADDED
@@ -0,0 +1,116 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Zero-shot Action Recognition with YOLOv8 (Inference on Video)
2
+
3
+ - Action recognition is a technique used to identify and classify actions performed by individuals in a video. This process enables more advanced analyses when multiple actions are considered. The actions can be detected and classified in real time.
4
+ - The system can be customized to recognize specific actions based on the user's preferences and requirements.
5
+
6
+ ## Table of Contents
7
+
8
+ - [Step 1: Install the Required Libraries](#step-1-install-the-required-libraries)
9
+ - [Step 2: Run the Action Recognition Using Ultralytics YOLOv8](#step-2-run-the-action-recognition-using-ultralytics-yolov8)
10
+ - [Usage Options](#usage-options)
11
+ - [FAQ](#faq)
12
+
13
+ ## Step 1: Install the Required Libraries
14
+
15
+ Clone the repository, install dependencies and `cd` to this local directory for commands in Step 2.
16
+
17
+ ```bash
18
+ # Clone ultralytics repo
19
+ git clone https://github.com/ultralytics/ultralytics
20
+
21
+ # cd to local directory
22
+ cd examples/YOLOv8-Action-Recognition
23
+
24
+ # Install dependencies
25
+ pip install -U -r requirements.txt
26
+ ```
27
+
28
+ ## Step 2: Run the Action Recognition Using Ultralytics YOLOv8
29
+
30
+ Here are the basic commands for running the inference:
31
+
32
+ ### Note
33
+
34
+ The action recognition model will automatically detect and track people in the video, and classify their actions based on the specified labels. The results will be displayed in real-time on the video output. You can customize the action labels by modifying the `--labels` argument when running the script.
35
+
36
+ ```bash
37
+ # Quick start
38
+ python action_recognition.py
39
+
40
+ # Basic usage
41
+ python action_recognition.py --source "https://www.youtube.com/watch?v=dQw4w9WgXcQ" --labels "dancing" "singing a song"
42
+
43
+ # Use local video file
44
+ python action_recognition.py --source path/to/video.mp4
45
+
46
+ # Better detector performance
47
+ python action_recognition.py --weights yolov8m.pt
48
+
49
+ # Run on CPU
50
+ python action_recognition.py --device cpu
51
+
52
+ # Use a different video classifier model
53
+ python action_recognition.py --video-classifier-model "s3d"
54
+
55
+ # Use FP16 for inference (only for HuggingFace models)
56
+ python action_recognition.py --fp16
57
+
58
+ # Export output as mp4
59
+ python action_recognition.py --output-path output.mp4
60
+
61
+ # Combine multiple options
62
+ python action_recognition.py --source "https://www.youtube.com/watch?v=dQw4w9WgXcQ" --device 0 --video-classifier-model "microsoft/xclip-base-patch32" --labels "dancing" "singing a song" --fp16
63
+ ```
64
+
65
+ ## Usage Options
66
+
67
+ - `--weights`: Path to the YOLO model weights (default: "yolov8n.pt")
68
+ - `--device`: Cuda device, i.e. 0 or 0,1,2,3 or cpu (default: auto-detect)
69
+ - `--source`: Video file path or YouTube URL (default: "[rickroll](https://www.youtube.com/watch?v=dQw4w9WgXcQ)")
70
+ - `--output-path`: Output video file path
71
+ - `--crop-margin-percentage`: Percentage of margin to add around detected objects (default: 10)
72
+ - `--num-video-sequence-samples`: Number of video frames to use for classification (default: 8)
73
+ - `--skip-frame`: Number of frames to skip between detections (default: 1)
74
+ - `--video-cls-overlap-ratio`: Overlap ratio between video sequences (default: 0.25)
75
+ - `--fp16`: Use FP16 for inference (only for HuggingFace models)
76
+ - `--video-classifier-model`: Video classifier model name or path (default: "microsoft/xclip-base-patch32")
77
+ - `--labels`: Labels for zero-shot video classification (default: \["dancing" "singing a song"\])
78
+
79
+ ## FAQ
80
+
81
+ **1. What Does Action Recognition Involve?**
82
+
83
+ Action recognition is a computational method used to identify and classify actions or activities performed by individuals in recorded video or real-time streams. This technique is widely used in video analysis, surveillance, and human-computer interaction, enabling the detection and understanding of human behaviors based on their motion patterns and context.
84
+
85
+ **2. Is Custom Action Labels Supported by the Action Recognition?**
86
+
87
+ Yes, custom action labels are supported by the action recognition system. The `action_recognition.py` script allows users to specify their own custom labels for zero-shot video classification. This can be done using the `--labels` argument when running the script. For example:
88
+
89
+ ```bash
90
+ python action_recognition.py --source https://www.youtube.com/watch?v=dQw4w9WgXcQ --labels "dancing" "singing" "jumping"
91
+ ```
92
+
93
+ You can adjust these labels to match the specific actions you want to recognize in your video. The system will then attempt to classify the detected actions based on these custom labels.
94
+
95
+ Additionally, you can choose between different video classification models:
96
+
97
+ 1. For Hugging Face models, you can use any compatible video classification model. The default is set to:
98
+
99
+ - "microsoft/xclip-base-patch32"
100
+
101
+ 2. For TorchVision models (no support for zero-shot labels), you can select from the following options:
102
+
103
+ - "s3d"
104
+ - "r3d_18"
105
+ - "swin3d_t"
106
+ - "swin3d_b"
107
+ - "mvit_v1_b"
108
+ - "mvit_v2_s"
109
+
110
+ **3. Why Combine Action Recognition with YOLOv8?**
111
+
112
+ YOLOv8 specializes in the detection and tracking of objects in video streams. Action recognition complements this by enabling the identification and classification of actions performed by individuals, making it a valuable application of YOLOv8.
113
+
114
+ **4. Can I Employ Other YOLO Versions?**
115
+
116
+ Certainly, you have the flexibility to specify different YOLO model weights using the `--weights` option.
yolov12/examples/YOLOv8-Action-Recognition/requirements.txt ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ # Ultralytics YOLO 🚀, AGPL-3.0 license
2
+
3
+ ultralytics
4
+ transformers
yolov12/examples/YOLOv8-CPP-Inference/CMakeLists.txt ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ cmake_minimum_required(VERSION 3.5)
2
+
3
+ project(Yolov8CPPInference VERSION 0.1)
4
+
5
+ set(CMAKE_INCLUDE_CURRENT_DIR ON)
6
+
7
+ # CUDA
8
+ set(CUDA_TOOLKIT_ROOT_DIR "/usr/local/cuda")
9
+ find_package(CUDA 11 REQUIRED)
10
+
11
+ set(CMAKE_CUDA_STANDARD 11)
12
+ set(CMAKE_CUDA_STANDARD_REQUIRED ON)
13
+ # !CUDA
14
+
15
+ # OpenCV
16
+ find_package(OpenCV REQUIRED)
17
+ include_directories(${OpenCV_INCLUDE_DIRS})
18
+ # !OpenCV
19
+
20
+ set(PROJECT_SOURCES
21
+ main.cpp
22
+
23
+ inference.h
24
+ inference.cpp
25
+ )
26
+
27
+ add_executable(Yolov8CPPInference ${PROJECT_SOURCES})
28
+ target_link_libraries(Yolov8CPPInference ${OpenCV_LIBS})
yolov12/examples/YOLOv8-CPP-Inference/README.md ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv8/YOLOv5 Inference C++
2
+
3
+ This example demonstrates how to perform inference using YOLOv8 and YOLOv5 models in C++ with OpenCV DNN API.
4
+
5
+ ## Usage
6
+
7
+ ```bash
8
+ git clone ultralytics
9
+ cd ultralytics
10
+ pip install .
11
+ cd examples/YOLOv8-CPP-Inference
12
+
13
+ # Add a **yolov8\_.onnx** and/or **yolov5\_.onnx** model(s) to the ultralytics folder.
14
+ # Edit the **main.cpp** to change the **projectBasePath** to match your user.
15
+
16
+ # Note that by default the CMake file will try to import the CUDA library to be used with the OpenCVs dnn (cuDNN) GPU Inference.
17
+ # If your OpenCV build does not use CUDA/cuDNN you can remove that import call and run the example on CPU.
18
+
19
+ mkdir build
20
+ cd build
21
+ cmake ..
22
+ make
23
+ ./Yolov8CPPInference
24
+ ```
25
+
26
+ ## Exporting YOLOv8 and YOLOv5 Models
27
+
28
+ To export YOLOv8 models:
29
+
30
+ ```bash
31
+ yolo export model=yolov8s.pt imgsz=480,640 format=onnx opset=12
32
+ ```
33
+
34
+ To export YOLOv5 models:
35
+
36
+ ```bash
37
+ python3 export.py --weights yolov5s.pt --img 480 640 --include onnx --opset 12
38
+ ```
39
+
40
+ yolov8s.onnx:
41
+
42
+ ![image](https://user-images.githubusercontent.com/40023722/217356132-a4cecf2e-2729-4acb-b80a-6559022d7707.png)
43
+
44
+ yolov5s.onnx:
45
+
46
+ ![image](https://user-images.githubusercontent.com/40023722/217357005-07464492-d1da-42e3-98a7-fc753f87d5e6.png)
47
+
48
+ This repository utilizes OpenCV DNN API to run ONNX exported models of YOLOv5 and YOLOv8. In theory, it should work for YOLOv6 and YOLOv7 as well, but they have not been tested. Note that the example networks are exported with rectangular (640x480) resolutions, but any exported resolution will work. You may want to use the letterbox approach for square images, depending on your use case.
49
+
50
+ The **main** branch version uses Qt as a GUI wrapper. The primary focus here is the **Inference** class file, which demonstrates how to transpose YOLOv8 models to work as YOLOv5 models.
yolov12/examples/YOLOv8-CPP-Inference/inference.cpp ADDED
@@ -0,0 +1,185 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #include "inference.h"
2
+
3
+ Inference::Inference(const std::string &onnxModelPath, const cv::Size &modelInputShape, const std::string &classesTxtFile, const bool &runWithCuda)
4
+ {
5
+ modelPath = onnxModelPath;
6
+ modelShape = modelInputShape;
7
+ classesPath = classesTxtFile;
8
+ cudaEnabled = runWithCuda;
9
+
10
+ loadOnnxNetwork();
11
+ // loadClassesFromFile(); The classes are hard-coded for this example
12
+ }
13
+
14
+ std::vector<Detection> Inference::runInference(const cv::Mat &input)
15
+ {
16
+ cv::Mat modelInput = input;
17
+ if (letterBoxForSquare && modelShape.width == modelShape.height)
18
+ modelInput = formatToSquare(modelInput);
19
+
20
+ cv::Mat blob;
21
+ cv::dnn::blobFromImage(modelInput, blob, 1.0/255.0, modelShape, cv::Scalar(), true, false);
22
+ net.setInput(blob);
23
+
24
+ std::vector<cv::Mat> outputs;
25
+ net.forward(outputs, net.getUnconnectedOutLayersNames());
26
+
27
+ int rows = outputs[0].size[1];
28
+ int dimensions = outputs[0].size[2];
29
+
30
+ bool yolov8 = false;
31
+ // yolov5 has an output of shape (batchSize, 25200, 85) (Num classes + box[x,y,w,h] + confidence[c])
32
+ // yolov8 has an output of shape (batchSize, 84, 8400) (Num classes + box[x,y,w,h])
33
+ if (dimensions > rows) // Check if the shape[2] is more than shape[1] (yolov8)
34
+ {
35
+ yolov8 = true;
36
+ rows = outputs[0].size[2];
37
+ dimensions = outputs[0].size[1];
38
+
39
+ outputs[0] = outputs[0].reshape(1, dimensions);
40
+ cv::transpose(outputs[0], outputs[0]);
41
+ }
42
+ float *data = (float *)outputs[0].data;
43
+
44
+ float x_factor = modelInput.cols / modelShape.width;
45
+ float y_factor = modelInput.rows / modelShape.height;
46
+
47
+ std::vector<int> class_ids;
48
+ std::vector<float> confidences;
49
+ std::vector<cv::Rect> boxes;
50
+
51
+ for (int i = 0; i < rows; ++i)
52
+ {
53
+ if (yolov8)
54
+ {
55
+ float *classes_scores = data+4;
56
+
57
+ cv::Mat scores(1, classes.size(), CV_32FC1, classes_scores);
58
+ cv::Point class_id;
59
+ double maxClassScore;
60
+
61
+ minMaxLoc(scores, 0, &maxClassScore, 0, &class_id);
62
+
63
+ if (maxClassScore > modelScoreThreshold)
64
+ {
65
+ confidences.push_back(maxClassScore);
66
+ class_ids.push_back(class_id.x);
67
+
68
+ float x = data[0];
69
+ float y = data[1];
70
+ float w = data[2];
71
+ float h = data[3];
72
+
73
+ int left = int((x - 0.5 * w) * x_factor);
74
+ int top = int((y - 0.5 * h) * y_factor);
75
+
76
+ int width = int(w * x_factor);
77
+ int height = int(h * y_factor);
78
+
79
+ boxes.push_back(cv::Rect(left, top, width, height));
80
+ }
81
+ }
82
+ else // yolov5
83
+ {
84
+ float confidence = data[4];
85
+
86
+ if (confidence >= modelConfidenceThreshold)
87
+ {
88
+ float *classes_scores = data+5;
89
+
90
+ cv::Mat scores(1, classes.size(), CV_32FC1, classes_scores);
91
+ cv::Point class_id;
92
+ double max_class_score;
93
+
94
+ minMaxLoc(scores, 0, &max_class_score, 0, &class_id);
95
+
96
+ if (max_class_score > modelScoreThreshold)
97
+ {
98
+ confidences.push_back(confidence);
99
+ class_ids.push_back(class_id.x);
100
+
101
+ float x = data[0];
102
+ float y = data[1];
103
+ float w = data[2];
104
+ float h = data[3];
105
+
106
+ int left = int((x - 0.5 * w) * x_factor);
107
+ int top = int((y - 0.5 * h) * y_factor);
108
+
109
+ int width = int(w * x_factor);
110
+ int height = int(h * y_factor);
111
+
112
+ boxes.push_back(cv::Rect(left, top, width, height));
113
+ }
114
+ }
115
+ }
116
+
117
+ data += dimensions;
118
+ }
119
+
120
+ std::vector<int> nms_result;
121
+ cv::dnn::NMSBoxes(boxes, confidences, modelScoreThreshold, modelNMSThreshold, nms_result);
122
+
123
+ std::vector<Detection> detections{};
124
+ for (unsigned long i = 0; i < nms_result.size(); ++i)
125
+ {
126
+ int idx = nms_result[i];
127
+
128
+ Detection result;
129
+ result.class_id = class_ids[idx];
130
+ result.confidence = confidences[idx];
131
+
132
+ std::random_device rd;
133
+ std::mt19937 gen(rd());
134
+ std::uniform_int_distribution<int> dis(100, 255);
135
+ result.color = cv::Scalar(dis(gen),
136
+ dis(gen),
137
+ dis(gen));
138
+
139
+ result.className = classes[result.class_id];
140
+ result.box = boxes[idx];
141
+
142
+ detections.push_back(result);
143
+ }
144
+
145
+ return detections;
146
+ }
147
+
148
+ void Inference::loadClassesFromFile()
149
+ {
150
+ std::ifstream inputFile(classesPath);
151
+ if (inputFile.is_open())
152
+ {
153
+ std::string classLine;
154
+ while (std::getline(inputFile, classLine))
155
+ classes.push_back(classLine);
156
+ inputFile.close();
157
+ }
158
+ }
159
+
160
+ void Inference::loadOnnxNetwork()
161
+ {
162
+ net = cv::dnn::readNetFromONNX(modelPath);
163
+ if (cudaEnabled)
164
+ {
165
+ std::cout << "\nRunning on CUDA" << std::endl;
166
+ net.setPreferableBackend(cv::dnn::DNN_BACKEND_CUDA);
167
+ net.setPreferableTarget(cv::dnn::DNN_TARGET_CUDA);
168
+ }
169
+ else
170
+ {
171
+ std::cout << "\nRunning on CPU" << std::endl;
172
+ net.setPreferableBackend(cv::dnn::DNN_BACKEND_OPENCV);
173
+ net.setPreferableTarget(cv::dnn::DNN_TARGET_CPU);
174
+ }
175
+ }
176
+
177
+ cv::Mat Inference::formatToSquare(const cv::Mat &source)
178
+ {
179
+ int col = source.cols;
180
+ int row = source.rows;
181
+ int _max = MAX(col, row);
182
+ cv::Mat result = cv::Mat::zeros(_max, _max, CV_8UC3);
183
+ source.copyTo(result(cv::Rect(0, 0, col, row)));
184
+ return result;
185
+ }
yolov12/examples/YOLOv8-CPP-Inference/inference.h ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #ifndef INFERENCE_H
2
+ #define INFERENCE_H
3
+
4
+ // Cpp native
5
+ #include <fstream>
6
+ #include <vector>
7
+ #include <string>
8
+ #include <random>
9
+
10
+ // OpenCV / DNN / Inference
11
+ #include <opencv2/imgproc.hpp>
12
+ #include <opencv2/opencv.hpp>
13
+ #include <opencv2/dnn.hpp>
14
+
15
+ struct Detection
16
+ {
17
+ int class_id{0};
18
+ std::string className{};
19
+ float confidence{0.0};
20
+ cv::Scalar color{};
21
+ cv::Rect box{};
22
+ };
23
+
24
+ class Inference
25
+ {
26
+ public:
27
+ Inference(const std::string &onnxModelPath, const cv::Size &modelInputShape = {640, 640}, const std::string &classesTxtFile = "", const bool &runWithCuda = true);
28
+ std::vector<Detection> runInference(const cv::Mat &input);
29
+
30
+ private:
31
+ void loadClassesFromFile();
32
+ void loadOnnxNetwork();
33
+ cv::Mat formatToSquare(const cv::Mat &source);
34
+
35
+ std::string modelPath{};
36
+ std::string classesPath{};
37
+ bool cudaEnabled{};
38
+
39
+ std::vector<std::string> classes{"person", "bicycle", "car", "motorcycle", "airplane", "bus", "train", "truck", "boat", "traffic light", "fire hydrant", "stop sign", "parking meter", "bench", "bird", "cat", "dog", "horse", "sheep", "cow", "elephant", "bear", "zebra", "giraffe", "backpack", "umbrella", "handbag", "tie", "suitcase", "frisbee", "skis", "snowboard", "sports ball", "kite", "baseball bat", "baseball glove", "skateboard", "surfboard", "tennis racket", "bottle", "wine glass", "cup", "fork", "knife", "spoon", "bowl", "banana", "apple", "sandwich", "orange", "broccoli", "carrot", "hot dog", "pizza", "donut", "cake", "chair", "couch", "potted plant", "bed", "dining table", "toilet", "tv", "laptop", "mouse", "remote", "keyboard", "cell phone", "microwave", "oven", "toaster", "sink", "refrigerator", "book", "clock", "vase", "scissors", "teddy bear", "hair drier", "toothbrush"};
40
+
41
+ cv::Size2f modelShape{};
42
+
43
+ float modelConfidenceThreshold {0.25};
44
+ float modelScoreThreshold {0.45};
45
+ float modelNMSThreshold {0.50};
46
+
47
+ bool letterBoxForSquare = true;
48
+
49
+ cv::dnn::Net net;
50
+ };
51
+
52
+ #endif // INFERENCE_H
yolov12/examples/YOLOv8-CPP-Inference/main.cpp ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #include <iostream>
2
+ #include <vector>
3
+ #include <getopt.h>
4
+
5
+ #include <opencv2/opencv.hpp>
6
+
7
+ #include "inference.h"
8
+
9
+ using namespace std;
10
+ using namespace cv;
11
+
12
+ int main(int argc, char **argv)
13
+ {
14
+ std::string projectBasePath = "/home/user/ultralytics"; // Set your ultralytics base path
15
+
16
+ bool runOnGPU = true;
17
+
18
+ //
19
+ // Pass in either:
20
+ //
21
+ // "yolov8s.onnx" or "yolov5s.onnx"
22
+ //
23
+ // To run Inference with yolov8/yolov5 (ONNX)
24
+ //
25
+
26
+ // Note that in this example the classes are hard-coded and 'classes.txt' is a place holder.
27
+ Inference inf(projectBasePath + "/yolov8s.onnx", cv::Size(640, 640), "classes.txt", runOnGPU);
28
+
29
+ std::vector<std::string> imageNames;
30
+ imageNames.push_back(projectBasePath + "/ultralytics/assets/bus.jpg");
31
+ imageNames.push_back(projectBasePath + "/ultralytics/assets/zidane.jpg");
32
+
33
+ for (int i = 0; i < imageNames.size(); ++i)
34
+ {
35
+ cv::Mat frame = cv::imread(imageNames[i]);
36
+
37
+ // Inference starts here...
38
+ std::vector<Detection> output = inf.runInference(frame);
39
+
40
+ int detections = output.size();
41
+ std::cout << "Number of detections:" << detections << std::endl;
42
+
43
+ for (int i = 0; i < detections; ++i)
44
+ {
45
+ Detection detection = output[i];
46
+
47
+ cv::Rect box = detection.box;
48
+ cv::Scalar color = detection.color;
49
+
50
+ // Detection box
51
+ cv::rectangle(frame, box, color, 2);
52
+
53
+ // Detection box text
54
+ std::string classString = detection.className + ' ' + std::to_string(detection.confidence).substr(0, 4);
55
+ cv::Size textSize = cv::getTextSize(classString, cv::FONT_HERSHEY_DUPLEX, 1, 2, 0);
56
+ cv::Rect textBox(box.x, box.y - 40, textSize.width + 10, textSize.height + 20);
57
+
58
+ cv::rectangle(frame, textBox, color, cv::FILLED);
59
+ cv::putText(frame, classString, cv::Point(box.x + 5, box.y - 10), cv::FONT_HERSHEY_DUPLEX, 1, cv::Scalar(0, 0, 0), 2, 0);
60
+ }
61
+ // Inference ends here...
62
+
63
+ // This is only for preview purposes
64
+ float scale = 0.8;
65
+ cv::resize(frame, frame, cv::Size(frame.cols*scale, frame.rows*scale));
66
+ cv::imshow("Inference", frame);
67
+
68
+ cv::waitKey(-1);
69
+ }
70
+ }
yolov12/examples/YOLOv8-LibTorch-CPP-Inference/CMakeLists.txt ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ cmake_minimum_required(VERSION 3.18 FATAL_ERROR)
2
+
3
+ project(yolov8_libtorch_example)
4
+
5
+ set(CMAKE_CXX_STANDARD 17)
6
+ set(CMAKE_CXX_STANDARD_REQUIRED ON)
7
+ set(CMAKE_CXX_EXTENSIONS OFF)
8
+
9
+
10
+ # -------------- OpenCV --------------
11
+ set(OpenCV_DIR "/path/to/opencv/lib/cmake/opencv4")
12
+ find_package(OpenCV REQUIRED)
13
+
14
+ message(STATUS "OpenCV library status:")
15
+ message(STATUS " config: ${OpenCV_DIR}")
16
+ message(STATUS " version: ${OpenCV_VERSION}")
17
+ message(STATUS " libraries: ${OpenCV_LIBS}")
18
+ message(STATUS " include path: ${OpenCV_INCLUDE_DIRS}")
19
+
20
+ include_directories(${OpenCV_INCLUDE_DIRS})
21
+
22
+ # -------------- libtorch --------------
23
+ list(APPEND CMAKE_PREFIX_PATH "/path/to/libtorch")
24
+ set(Torch_DIR "/path/to/libtorch/share/cmake/Torch")
25
+
26
+ find_package(Torch REQUIRED)
27
+ set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} ${TORCH_CXX_FLAGS}")
28
+ message("${TORCH_LIBRARIES}")
29
+ message("${TORCH_INCLUDE_DIRS}")
30
+
31
+ # The following code block is suggested to be used on Windows.
32
+ # According to https://github.com/pytorch/pytorch/issues/25457,
33
+ # the DLLs need to be copied to avoid memory errors.
34
+ # if (MSVC)
35
+ # file(GLOB TORCH_DLLS "${TORCH_INSTALL_PREFIX}/lib/*.dll")
36
+ # add_custom_command(TARGET yolov8_libtorch_example
37
+ # POST_BUILD
38
+ # COMMAND ${CMAKE_COMMAND} -E copy_if_different
39
+ # ${TORCH_DLLS}
40
+ # $<TARGET_FILE_DIR:yolov8_libtorch_example>)
41
+ # endif (MSVC)
42
+
43
+ include_directories(${TORCH_INCLUDE_DIRS})
44
+
45
+ add_executable(yolov8_libtorch_inference "${CMAKE_CURRENT_SOURCE_DIR}/main.cc")
46
+ target_link_libraries(yolov8_libtorch_inference ${TORCH_LIBRARIES} ${OpenCV_LIBS})
47
+ set_property(TARGET yolov8_libtorch_inference PROPERTY CXX_STANDARD 17)
yolov12/examples/YOLOv8-LibTorch-CPP-Inference/README.md ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv8 LibTorch Inference C++
2
+
3
+ This example demonstrates how to perform inference using YOLOv8 models in C++ with LibTorch API.
4
+
5
+ ## Dependencies
6
+
7
+ | Dependency | Version |
8
+ | ------------ | -------- |
9
+ | OpenCV | >=4.0.0 |
10
+ | C++ Standard | >=17 |
11
+ | Cmake | >=3.18 |
12
+ | Libtorch | >=1.12.1 |
13
+
14
+ ## Usage
15
+
16
+ ```bash
17
+ git clone ultralytics
18
+ cd ultralytics
19
+ pip install .
20
+ cd examples/YOLOv8-LibTorch-CPP-Inference
21
+
22
+ mkdir build
23
+ cd build
24
+ cmake ..
25
+ make
26
+ ./yolov8_libtorch_inference
27
+ ```
28
+
29
+ ## Exporting YOLOv8
30
+
31
+ To export YOLOv8 models:
32
+
33
+ ```bash
34
+ yolo export model=yolov8s.pt imgsz=640 format=torchscript
35
+ ```
yolov12/examples/YOLOv8-LibTorch-CPP-Inference/main.cc ADDED
@@ -0,0 +1,260 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #include <iostream>
2
+
3
+ #include <opencv2/core.hpp>
4
+ #include <opencv2/imgproc.hpp>
5
+ #include <opencv2/imgcodecs.hpp>
6
+ #include <torch/torch.h>
7
+ #include <torch/script.h>
8
+
9
+ using torch::indexing::Slice;
10
+ using torch::indexing::None;
11
+
12
+
13
+ float generate_scale(cv::Mat& image, const std::vector<int>& target_size) {
14
+ int origin_w = image.cols;
15
+ int origin_h = image.rows;
16
+
17
+ int target_h = target_size[0];
18
+ int target_w = target_size[1];
19
+
20
+ float ratio_h = static_cast<float>(target_h) / static_cast<float>(origin_h);
21
+ float ratio_w = static_cast<float>(target_w) / static_cast<float>(origin_w);
22
+ float resize_scale = std::min(ratio_h, ratio_w);
23
+ return resize_scale;
24
+ }
25
+
26
+
27
+ float letterbox(cv::Mat &input_image, cv::Mat &output_image, const std::vector<int> &target_size) {
28
+ if (input_image.cols == target_size[1] && input_image.rows == target_size[0]) {
29
+ if (input_image.data == output_image.data) {
30
+ return 1.;
31
+ } else {
32
+ output_image = input_image.clone();
33
+ return 1.;
34
+ }
35
+ }
36
+
37
+ float resize_scale = generate_scale(input_image, target_size);
38
+ int new_shape_w = std::round(input_image.cols * resize_scale);
39
+ int new_shape_h = std::round(input_image.rows * resize_scale);
40
+ float padw = (target_size[1] - new_shape_w) / 2.;
41
+ float padh = (target_size[0] - new_shape_h) / 2.;
42
+
43
+ int top = std::round(padh - 0.1);
44
+ int bottom = std::round(padh + 0.1);
45
+ int left = std::round(padw - 0.1);
46
+ int right = std::round(padw + 0.1);
47
+
48
+ cv::resize(input_image, output_image,
49
+ cv::Size(new_shape_w, new_shape_h),
50
+ 0, 0, cv::INTER_AREA);
51
+
52
+ cv::copyMakeBorder(output_image, output_image, top, bottom, left, right,
53
+ cv::BORDER_CONSTANT, cv::Scalar(114.));
54
+ return resize_scale;
55
+ }
56
+
57
+
58
+ torch::Tensor xyxy2xywh(const torch::Tensor& x) {
59
+ auto y = torch::empty_like(x);
60
+ y.index_put_({"...", 0}, (x.index({"...", 0}) + x.index({"...", 2})).div(2));
61
+ y.index_put_({"...", 1}, (x.index({"...", 1}) + x.index({"...", 3})).div(2));
62
+ y.index_put_({"...", 2}, x.index({"...", 2}) - x.index({"...", 0}));
63
+ y.index_put_({"...", 3}, x.index({"...", 3}) - x.index({"...", 1}));
64
+ return y;
65
+ }
66
+
67
+
68
+ torch::Tensor xywh2xyxy(const torch::Tensor& x) {
69
+ auto y = torch::empty_like(x);
70
+ auto dw = x.index({"...", 2}).div(2);
71
+ auto dh = x.index({"...", 3}).div(2);
72
+ y.index_put_({"...", 0}, x.index({"...", 0}) - dw);
73
+ y.index_put_({"...", 1}, x.index({"...", 1}) - dh);
74
+ y.index_put_({"...", 2}, x.index({"...", 0}) + dw);
75
+ y.index_put_({"...", 3}, x.index({"...", 1}) + dh);
76
+ return y;
77
+ }
78
+
79
+
80
+ // Reference: https://github.com/pytorch/vision/blob/main/torchvision/csrc/ops/cpu/nms_kernel.cpp
81
+ torch::Tensor nms(const torch::Tensor& bboxes, const torch::Tensor& scores, float iou_threshold) {
82
+ if (bboxes.numel() == 0)
83
+ return torch::empty({0}, bboxes.options().dtype(torch::kLong));
84
+
85
+ auto x1_t = bboxes.select(1, 0).contiguous();
86
+ auto y1_t = bboxes.select(1, 1).contiguous();
87
+ auto x2_t = bboxes.select(1, 2).contiguous();
88
+ auto y2_t = bboxes.select(1, 3).contiguous();
89
+
90
+ torch::Tensor areas_t = (x2_t - x1_t) * (y2_t - y1_t);
91
+
92
+ auto order_t = std::get<1>(
93
+ scores.sort(/*stable=*/true, /*dim=*/0, /* descending=*/true));
94
+
95
+ auto ndets = bboxes.size(0);
96
+ torch::Tensor suppressed_t = torch::zeros({ndets}, bboxes.options().dtype(torch::kByte));
97
+ torch::Tensor keep_t = torch::zeros({ndets}, bboxes.options().dtype(torch::kLong));
98
+
99
+ auto suppressed = suppressed_t.data_ptr<uint8_t>();
100
+ auto keep = keep_t.data_ptr<int64_t>();
101
+ auto order = order_t.data_ptr<int64_t>();
102
+ auto x1 = x1_t.data_ptr<float>();
103
+ auto y1 = y1_t.data_ptr<float>();
104
+ auto x2 = x2_t.data_ptr<float>();
105
+ auto y2 = y2_t.data_ptr<float>();
106
+ auto areas = areas_t.data_ptr<float>();
107
+
108
+ int64_t num_to_keep = 0;
109
+
110
+ for (int64_t _i = 0; _i < ndets; _i++) {
111
+ auto i = order[_i];
112
+ if (suppressed[i] == 1)
113
+ continue;
114
+ keep[num_to_keep++] = i;
115
+ auto ix1 = x1[i];
116
+ auto iy1 = y1[i];
117
+ auto ix2 = x2[i];
118
+ auto iy2 = y2[i];
119
+ auto iarea = areas[i];
120
+
121
+ for (int64_t _j = _i + 1; _j < ndets; _j++) {
122
+ auto j = order[_j];
123
+ if (suppressed[j] == 1)
124
+ continue;
125
+ auto xx1 = std::max(ix1, x1[j]);
126
+ auto yy1 = std::max(iy1, y1[j]);
127
+ auto xx2 = std::min(ix2, x2[j]);
128
+ auto yy2 = std::min(iy2, y2[j]);
129
+
130
+ auto w = std::max(static_cast<float>(0), xx2 - xx1);
131
+ auto h = std::max(static_cast<float>(0), yy2 - yy1);
132
+ auto inter = w * h;
133
+ auto ovr = inter / (iarea + areas[j] - inter);
134
+ if (ovr > iou_threshold)
135
+ suppressed[j] = 1;
136
+ }
137
+ }
138
+ return keep_t.narrow(0, 0, num_to_keep);
139
+ }
140
+
141
+
142
+ torch::Tensor non_max_suppression(torch::Tensor& prediction, float conf_thres = 0.25, float iou_thres = 0.45, int max_det = 300) {
143
+ auto bs = prediction.size(0);
144
+ auto nc = prediction.size(1) - 4;
145
+ auto nm = prediction.size(1) - nc - 4;
146
+ auto mi = 4 + nc;
147
+ auto xc = prediction.index({Slice(), Slice(4, mi)}).amax(1) > conf_thres;
148
+
149
+ prediction = prediction.transpose(-1, -2);
150
+ prediction.index_put_({"...", Slice({None, 4})}, xywh2xyxy(prediction.index({"...", Slice(None, 4)})));
151
+
152
+ std::vector<torch::Tensor> output;
153
+ for (int i = 0; i < bs; i++) {
154
+ output.push_back(torch::zeros({0, 6 + nm}, prediction.device()));
155
+ }
156
+
157
+ for (int xi = 0; xi < prediction.size(0); xi++) {
158
+ auto x = prediction[xi];
159
+ x = x.index({xc[xi]});
160
+ auto x_split = x.split({4, nc, nm}, 1);
161
+ auto box = x_split[0], cls = x_split[1], mask = x_split[2];
162
+ auto [conf, j] = cls.max(1, true);
163
+ x = torch::cat({box, conf, j.toType(torch::kFloat), mask}, 1);
164
+ x = x.index({conf.view(-1) > conf_thres});
165
+ int n = x.size(0);
166
+ if (!n) { continue; }
167
+
168
+ // NMS
169
+ auto c = x.index({Slice(), Slice{5, 6}}) * 7680;
170
+ auto boxes = x.index({Slice(), Slice(None, 4)}) + c;
171
+ auto scores = x.index({Slice(), 4});
172
+ auto i = nms(boxes, scores, iou_thres);
173
+ i = i.index({Slice(None, max_det)});
174
+ output[xi] = x.index({i});
175
+ }
176
+
177
+ return torch::stack(output);
178
+ }
179
+
180
+
181
+ torch::Tensor clip_boxes(torch::Tensor& boxes, const std::vector<int>& shape) {
182
+ boxes.index_put_({"...", 0}, boxes.index({"...", 0}).clamp(0, shape[1]));
183
+ boxes.index_put_({"...", 1}, boxes.index({"...", 1}).clamp(0, shape[0]));
184
+ boxes.index_put_({"...", 2}, boxes.index({"...", 2}).clamp(0, shape[1]));
185
+ boxes.index_put_({"...", 3}, boxes.index({"...", 3}).clamp(0, shape[0]));
186
+ return boxes;
187
+ }
188
+
189
+
190
+ torch::Tensor scale_boxes(const std::vector<int>& img1_shape, torch::Tensor& boxes, const std::vector<int>& img0_shape) {
191
+ auto gain = (std::min)((float)img1_shape[0] / img0_shape[0], (float)img1_shape[1] / img0_shape[1]);
192
+ auto pad0 = std::round((float)(img1_shape[1] - img0_shape[1] * gain) / 2. - 0.1);
193
+ auto pad1 = std::round((float)(img1_shape[0] - img0_shape[0] * gain) / 2. - 0.1);
194
+
195
+ boxes.index_put_({"...", 0}, boxes.index({"...", 0}) - pad0);
196
+ boxes.index_put_({"...", 2}, boxes.index({"...", 2}) - pad0);
197
+ boxes.index_put_({"...", 1}, boxes.index({"...", 1}) - pad1);
198
+ boxes.index_put_({"...", 3}, boxes.index({"...", 3}) - pad1);
199
+ boxes.index_put_({"...", Slice(None, 4)}, boxes.index({"...", Slice(None, 4)}).div(gain));
200
+ return boxes;
201
+ }
202
+
203
+
204
+ int main() {
205
+ // Device
206
+ torch::Device device(torch::cuda::is_available() ? torch::kCUDA :torch::kCPU);
207
+
208
+ // Note that in this example the classes are hard-coded
209
+ std::vector<std::string> classes {"person", "bicycle", "car", "motorcycle", "airplane", "bus", "train", "truck", "boat", "traffic light", "fire hydrant",
210
+ "stop sign", "parking meter", "bench", "bird", "cat", "dog", "horse", "sheep", "cow", "elephant", "bear", "zebra",
211
+ "giraffe", "backpack", "umbrella", "handbag", "tie", "suitcase", "frisbee", "skis", "snowboard", "sports ball", "kite",
212
+ "baseball bat", "baseball glove", "skateboard", "surfboard", "tennis racket", "bottle", "wine glass", "cup", "fork", "knife",
213
+ "spoon", "bowl", "banana", "apple", "sandwich", "orange", "broccoli", "carrot", "hot dog", "pizza", "donut", "cake", "chair",
214
+ "couch", "potted plant", "bed", "dining table", "toilet", "tv", "laptop", "mouse", "remote", "keyboard", "cell phone",
215
+ "microwave", "oven", "toaster", "sink", "refrigerator", "book", "clock", "vase", "scissors", "teddy bear", "hair drier", "toothbrush"};
216
+
217
+ try {
218
+ // Load the model (e.g. yolov8s.torchscript)
219
+ std::string model_path = "/path/to/yolov8s.torchscript";
220
+ torch::jit::script::Module yolo_model;
221
+ yolo_model = torch::jit::load(model_path);
222
+ yolo_model.eval();
223
+ yolo_model.to(device, torch::kFloat32);
224
+
225
+ // Load image and preprocess
226
+ cv::Mat image = cv::imread("/path/to/bus.jpg");
227
+ cv::Mat input_image;
228
+ letterbox(image, input_image, {640, 640});
229
+ cv::cvtColor(input_image, input_image, cv::COLOR_BGR2RGB);
230
+
231
+ torch::Tensor image_tensor = torch::from_blob(input_image.data, {input_image.rows, input_image.cols, 3}, torch::kByte).to(device);
232
+ image_tensor = image_tensor.toType(torch::kFloat32).div(255);
233
+ image_tensor = image_tensor.permute({2, 0, 1});
234
+ image_tensor = image_tensor.unsqueeze(0);
235
+ std::vector<torch::jit::IValue> inputs {image_tensor};
236
+
237
+ // Inference
238
+ torch::Tensor output = yolo_model.forward(inputs).toTensor().cpu();
239
+
240
+ // NMS
241
+ auto keep = non_max_suppression(output)[0];
242
+ auto boxes = keep.index({Slice(), Slice(None, 4)});
243
+ keep.index_put_({Slice(), Slice(None, 4)}, scale_boxes({input_image.rows, input_image.cols}, boxes, {image.rows, image.cols}));
244
+
245
+ // Show the results
246
+ for (int i = 0; i < keep.size(0); i++) {
247
+ int x1 = keep[i][0].item().toFloat();
248
+ int y1 = keep[i][1].item().toFloat();
249
+ int x2 = keep[i][2].item().toFloat();
250
+ int y2 = keep[i][3].item().toFloat();
251
+ float conf = keep[i][4].item().toFloat();
252
+ int cls = keep[i][5].item().toInt();
253
+ std::cout << "Rect: [" << x1 << "," << y1 << "," << x2 << "," << y2 << "] Conf: " << conf << " Class: " << classes[cls] << std::endl;
254
+ }
255
+ } catch (const c10::Error& e) {
256
+ std::cout << e.msg() << std::endl;
257
+ }
258
+
259
+ return 0;
260
+ }
yolov12/examples/YOLOv8-ONNXRuntime-CPP/CMakeLists.txt ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ cmake_minimum_required(VERSION 3.5)
2
+
3
+ set(PROJECT_NAME Yolov8OnnxRuntimeCPPInference)
4
+ project(${PROJECT_NAME} VERSION 0.0.1 LANGUAGES CXX)
5
+
6
+
7
+ # -------------- Support C++17 for using filesystem ------------------#
8
+ set(CMAKE_CXX_STANDARD 17)
9
+ set(CMAKE_CXX_STANDARD_REQUIRED ON)
10
+ set(CMAKE_CXX_EXTENSIONS ON)
11
+ set(CMAKE_INCLUDE_CURRENT_DIR ON)
12
+
13
+
14
+ # -------------- OpenCV ------------------#
15
+ find_package(OpenCV REQUIRED)
16
+ include_directories(${OpenCV_INCLUDE_DIRS})
17
+
18
+
19
+ # -------------- Compile CUDA for FP16 inference if needed ------------------#
20
+ option(USE_CUDA "Enable CUDA support" ON)
21
+ if (NOT APPLE AND USE_CUDA)
22
+ find_package(CUDA REQUIRED)
23
+ include_directories(${CUDA_INCLUDE_DIRS})
24
+ add_definitions(-DUSE_CUDA)
25
+ else ()
26
+ set(USE_CUDA OFF)
27
+ endif ()
28
+
29
+ # -------------- ONNXRUNTIME ------------------#
30
+
31
+ # Set ONNXRUNTIME_VERSION
32
+ set(ONNXRUNTIME_VERSION 1.15.1)
33
+
34
+ if (WIN32)
35
+ if (USE_CUDA)
36
+ set(ONNXRUNTIME_ROOT "${CMAKE_CURRENT_SOURCE_DIR}/onnxruntime-win-x64-gpu-${ONNXRUNTIME_VERSION}")
37
+ else ()
38
+ set(ONNXRUNTIME_ROOT "${CMAKE_CURRENT_SOURCE_DIR}/onnxruntime-win-x64-${ONNXRUNTIME_VERSION}")
39
+ endif ()
40
+ elseif (LINUX)
41
+ if (USE_CUDA)
42
+ set(ONNXRUNTIME_ROOT "${CMAKE_CURRENT_SOURCE_DIR}/onnxruntime-linux-x64-gpu-${ONNXRUNTIME_VERSION}")
43
+ else ()
44
+ set(ONNXRUNTIME_ROOT "${CMAKE_CURRENT_SOURCE_DIR}/onnxruntime-linux-x64-${ONNXRUNTIME_VERSION}")
45
+ endif ()
46
+ elseif (APPLE)
47
+ set(ONNXRUNTIME_ROOT "${CMAKE_CURRENT_SOURCE_DIR}/onnxruntime-osx-arm64-${ONNXRUNTIME_VERSION}")
48
+ # Apple X64 binary
49
+ # set(ONNXRUNTIME_ROOT "${CMAKE_CURRENT_SOURCE_DIR}/onnxruntime-osx-x64-${ONNXRUNTIME_VERSION}")
50
+ # Apple Universal binary
51
+ # set(ONNXRUNTIME_ROOT "${CMAKE_CURRENT_SOURCE_DIR}/onnxruntime-osx-universal2-${ONNXRUNTIME_VERSION}")
52
+ else ()
53
+ message(SEND_ERROR "Variable ONNXRUNTIME_ROOT is not set properly. Please check if your cmake project \
54
+ is not compiled with `-D WIN32=TRUE`, `-D LINUX=TRUE`, or `-D APPLE=TRUE`!")
55
+ endif ()
56
+
57
+ include_directories(${PROJECT_NAME} ${ONNXRUNTIME_ROOT}/include)
58
+
59
+ set(PROJECT_SOURCES
60
+ main.cpp
61
+ inference.h
62
+ inference.cpp
63
+ )
64
+
65
+ add_executable(${PROJECT_NAME} ${PROJECT_SOURCES})
66
+
67
+ if (WIN32)
68
+ target_link_libraries(${PROJECT_NAME} ${OpenCV_LIBS} ${ONNXRUNTIME_ROOT}/lib/onnxruntime.lib)
69
+ if (USE_CUDA)
70
+ target_link_libraries(${PROJECT_NAME} ${CUDA_LIBRARIES})
71
+ endif ()
72
+ elseif (LINUX)
73
+ target_link_libraries(${PROJECT_NAME} ${OpenCV_LIBS} ${ONNXRUNTIME_ROOT}/lib/libonnxruntime.so)
74
+ if (USE_CUDA)
75
+ target_link_libraries(${PROJECT_NAME} ${CUDA_LIBRARIES})
76
+ endif ()
77
+ elseif (APPLE)
78
+ target_link_libraries(${PROJECT_NAME} ${OpenCV_LIBS} ${ONNXRUNTIME_ROOT}/lib/libonnxruntime.dylib)
79
+ endif ()
80
+
81
+ # For windows system, copy onnxruntime.dll to the same folder of the executable file
82
+ if (WIN32)
83
+ add_custom_command(TARGET ${PROJECT_NAME} POST_BUILD
84
+ COMMAND ${CMAKE_COMMAND} -E copy_if_different
85
+ "${ONNXRUNTIME_ROOT}/lib/onnxruntime.dll"
86
+ $<TARGET_FILE_DIR:${PROJECT_NAME}>)
87
+ endif ()
88
+
89
+ # Download https://raw.githubusercontent.com/ultralytics/ultralytics/main/ultralytics/cfg/datasets/coco.yaml
90
+ # and put it in the same folder of the executable file
91
+ configure_file(coco.yaml ${CMAKE_CURRENT_BINARY_DIR}/coco.yaml COPYONLY)
92
+
93
+ # Copy yolov8n.onnx file to the same folder of the executable file
94
+ configure_file(yolov8n.onnx ${CMAKE_CURRENT_BINARY_DIR}/yolov8n.onnx COPYONLY)
95
+
96
+ # Create folder name images in the same folder of the executable file
97
+ add_custom_command(TARGET ${PROJECT_NAME} POST_BUILD
98
+ COMMAND ${CMAKE_COMMAND} -E make_directory ${CMAKE_CURRENT_BINARY_DIR}/images
99
+ )
yolov12/examples/YOLOv8-ONNXRuntime-CPP/README.md ADDED
@@ -0,0 +1,120 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv8 OnnxRuntime C++
2
+
3
+ <img alt="C++" src="https://img.shields.io/badge/C++-17-blue.svg?style=flat&logo=c%2B%2B"> <img alt="Onnx-runtime" src="https://img.shields.io/badge/OnnxRuntime-717272.svg?logo=Onnx&logoColor=white">
4
+
5
+ This example demonstrates how to perform inference using YOLOv8 in C++ with ONNX Runtime and OpenCV's API.
6
+
7
+ ## Benefits ✨
8
+
9
+ - Friendly for deployment in the industrial sector.
10
+ - Faster than OpenCV's DNN inference on both CPU and GPU.
11
+ - Supports FP32 and FP16 CUDA acceleration.
12
+
13
+ ## Note ☕
14
+
15
+ 1. Benefit for Ultralytics' latest release, a `Transpose` op is added to the YOLOv8 model, while make v8 and v5 has the same output shape. Therefore, you can run inference with YOLOv5/v7/v8 via this project.
16
+
17
+ ## Exporting YOLOv8 Models 📦
18
+
19
+ To export YOLOv8 models, use the following Python script:
20
+
21
+ ```python
22
+ from ultralytics import YOLO
23
+
24
+ # Load a YOLOv8 model
25
+ model = YOLO("yolov8n.pt")
26
+
27
+ # Export the model
28
+ model.export(format="onnx", opset=12, simplify=True, dynamic=False, imgsz=640)
29
+ ```
30
+
31
+ Alternatively, you can use the following command for exporting the model in the terminal
32
+
33
+ ```bash
34
+ yolo export model=yolov8n.pt opset=12 simplify=True dynamic=False format=onnx imgsz=640,640
35
+ ```
36
+
37
+ ## Exporting YOLOv8 FP16 Models 📦
38
+
39
+ ```python
40
+ import onnx
41
+ from onnxconverter_common import float16
42
+
43
+ model = onnx.load(R"YOUR_ONNX_PATH")
44
+ model_fp16 = float16.convert_float_to_float16(model)
45
+ onnx.save(model_fp16, R"YOUR_FP16_ONNX_PATH")
46
+ ```
47
+
48
+ ## Download COCO.yaml file 📂
49
+
50
+ In order to run example, you also need to download coco.yaml. You can download the file manually from [here](https://raw.githubusercontent.com/ultralytics/ultralytics/main/ultralytics/cfg/datasets/coco.yaml)
51
+
52
+ ## Dependencies ⚙️
53
+
54
+ | Dependency | Version |
55
+ | -------------------------------- | ------------- |
56
+ | Onnxruntime(linux,windows,macos) | >=1.14.1 |
57
+ | OpenCV | >=4.0.0 |
58
+ | C++ Standard | >=17 |
59
+ | Cmake | >=3.5 |
60
+ | Cuda (Optional) | >=11.4 \<12.0 |
61
+ | cuDNN (Cuda required) | =8 |
62
+
63
+ Note: The dependency on C++17 is due to the usage of the C++17 filesystem feature.
64
+
65
+ Note (2): Due to ONNX Runtime, we need to use CUDA 11 and cuDNN 8. Keep in mind that this requirement might change in the future.
66
+
67
+ ## Build 🛠️
68
+
69
+ 1. Clone the repository to your local machine.
70
+
71
+ 2. Navigate to the root directory of the repository.
72
+
73
+ 3. Create a build directory and navigate to it:
74
+
75
+ ```console
76
+ mkdir build && cd build
77
+ ```
78
+
79
+ 4. Run CMake to generate the build files:
80
+
81
+ ```console
82
+ cmake ..
83
+ ```
84
+
85
+ **Notice**:
86
+
87
+ If you encounter an error indicating that the `ONNXRUNTIME_ROOT` variable is not set correctly, you can resolve this by building the project using the appropriate command tailored to your system.
88
+
89
+ ```console
90
+ # compiled in a win32 system
91
+ cmake -D WIN32=TRUE ..
92
+ # compiled in a linux system
93
+ cmake -D LINUX=TRUE ..
94
+ # compiled in an apple system
95
+ cmake -D APPLE=TRUE ..
96
+ ```
97
+
98
+ 5. Build the project:
99
+
100
+ ```console
101
+ make
102
+ ```
103
+
104
+ 6. The built executable should now be located in the `build` directory.
105
+
106
+ ## Usage 🚀
107
+
108
+ ```c++
109
+ //change your param as you like
110
+ //Pay attention to your device and the onnx model type(fp32 or fp16)
111
+ DL_INIT_PARAM params;
112
+ params.rectConfidenceThreshold = 0.1;
113
+ params.iouThreshold = 0.5;
114
+ params.modelPath = "yolov8n.onnx";
115
+ params.imgSize = { 640, 640 };
116
+ params.cudaEnable = true;
117
+ params.modelType = YOLO_DETECT_V8;
118
+ yoloDetector->CreateSession(params);
119
+ Detector(yoloDetector);
120
+ ```
yolov12/examples/YOLOv8-ONNXRuntime-CPP/inference.cpp ADDED
@@ -0,0 +1,375 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #include "inference.h"
2
+ #include <regex>
3
+
4
+ #define benchmark
5
+ #define min(a,b) (((a) < (b)) ? (a) : (b))
6
+ YOLO_V8::YOLO_V8() {
7
+
8
+ }
9
+
10
+
11
+ YOLO_V8::~YOLO_V8() {
12
+ delete session;
13
+ }
14
+
15
+ #ifdef USE_CUDA
16
+ namespace Ort
17
+ {
18
+ template<>
19
+ struct TypeToTensorType<half> { static constexpr ONNXTensorElementDataType type = ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT16; };
20
+ }
21
+ #endif
22
+
23
+
24
+ template<typename T>
25
+ char* BlobFromImage(cv::Mat& iImg, T& iBlob) {
26
+ int channels = iImg.channels();
27
+ int imgHeight = iImg.rows;
28
+ int imgWidth = iImg.cols;
29
+
30
+ for (int c = 0; c < channels; c++)
31
+ {
32
+ for (int h = 0; h < imgHeight; h++)
33
+ {
34
+ for (int w = 0; w < imgWidth; w++)
35
+ {
36
+ iBlob[c * imgWidth * imgHeight + h * imgWidth + w] = typename std::remove_pointer<T>::type(
37
+ (iImg.at<cv::Vec3b>(h, w)[c]) / 255.0f);
38
+ }
39
+ }
40
+ }
41
+ return RET_OK;
42
+ }
43
+
44
+
45
+ char* YOLO_V8::PreProcess(cv::Mat& iImg, std::vector<int> iImgSize, cv::Mat& oImg)
46
+ {
47
+ if (iImg.channels() == 3)
48
+ {
49
+ oImg = iImg.clone();
50
+ cv::cvtColor(oImg, oImg, cv::COLOR_BGR2RGB);
51
+ }
52
+ else
53
+ {
54
+ cv::cvtColor(iImg, oImg, cv::COLOR_GRAY2RGB);
55
+ }
56
+
57
+ switch (modelType)
58
+ {
59
+ case YOLO_DETECT_V8:
60
+ case YOLO_POSE:
61
+ case YOLO_DETECT_V8_HALF:
62
+ case YOLO_POSE_V8_HALF://LetterBox
63
+ {
64
+ if (iImg.cols >= iImg.rows)
65
+ {
66
+ resizeScales = iImg.cols / (float)iImgSize.at(0);
67
+ cv::resize(oImg, oImg, cv::Size(iImgSize.at(0), int(iImg.rows / resizeScales)));
68
+ }
69
+ else
70
+ {
71
+ resizeScales = iImg.rows / (float)iImgSize.at(0);
72
+ cv::resize(oImg, oImg, cv::Size(int(iImg.cols / resizeScales), iImgSize.at(1)));
73
+ }
74
+ cv::Mat tempImg = cv::Mat::zeros(iImgSize.at(0), iImgSize.at(1), CV_8UC3);
75
+ oImg.copyTo(tempImg(cv::Rect(0, 0, oImg.cols, oImg.rows)));
76
+ oImg = tempImg;
77
+ break;
78
+ }
79
+ case YOLO_CLS://CenterCrop
80
+ {
81
+ int h = iImg.rows;
82
+ int w = iImg.cols;
83
+ int m = min(h, w);
84
+ int top = (h - m) / 2;
85
+ int left = (w - m) / 2;
86
+ cv::resize(oImg(cv::Rect(left, top, m, m)), oImg, cv::Size(iImgSize.at(0), iImgSize.at(1)));
87
+ break;
88
+ }
89
+ }
90
+ return RET_OK;
91
+ }
92
+
93
+
94
+ char* YOLO_V8::CreateSession(DL_INIT_PARAM& iParams) {
95
+ char* Ret = RET_OK;
96
+ std::regex pattern("[\u4e00-\u9fa5]");
97
+ bool result = std::regex_search(iParams.modelPath, pattern);
98
+ if (result)
99
+ {
100
+ Ret = "[YOLO_V8]:Your model path is error.Change your model path without chinese characters.";
101
+ std::cout << Ret << std::endl;
102
+ return Ret;
103
+ }
104
+ try
105
+ {
106
+ rectConfidenceThreshold = iParams.rectConfidenceThreshold;
107
+ iouThreshold = iParams.iouThreshold;
108
+ imgSize = iParams.imgSize;
109
+ modelType = iParams.modelType;
110
+ env = Ort::Env(ORT_LOGGING_LEVEL_WARNING, "Yolo");
111
+ Ort::SessionOptions sessionOption;
112
+ if (iParams.cudaEnable)
113
+ {
114
+ cudaEnable = iParams.cudaEnable;
115
+ OrtCUDAProviderOptions cudaOption;
116
+ cudaOption.device_id = 0;
117
+ sessionOption.AppendExecutionProvider_CUDA(cudaOption);
118
+ }
119
+ sessionOption.SetGraphOptimizationLevel(GraphOptimizationLevel::ORT_ENABLE_ALL);
120
+ sessionOption.SetIntraOpNumThreads(iParams.intraOpNumThreads);
121
+ sessionOption.SetLogSeverityLevel(iParams.logSeverityLevel);
122
+
123
+ #ifdef _WIN32
124
+ int ModelPathSize = MultiByteToWideChar(CP_UTF8, 0, iParams.modelPath.c_str(), static_cast<int>(iParams.modelPath.length()), nullptr, 0);
125
+ wchar_t* wide_cstr = new wchar_t[ModelPathSize + 1];
126
+ MultiByteToWideChar(CP_UTF8, 0, iParams.modelPath.c_str(), static_cast<int>(iParams.modelPath.length()), wide_cstr, ModelPathSize);
127
+ wide_cstr[ModelPathSize] = L'\0';
128
+ const wchar_t* modelPath = wide_cstr;
129
+ #else
130
+ const char* modelPath = iParams.modelPath.c_str();
131
+ #endif // _WIN32
132
+
133
+ session = new Ort::Session(env, modelPath, sessionOption);
134
+ Ort::AllocatorWithDefaultOptions allocator;
135
+ size_t inputNodesNum = session->GetInputCount();
136
+ for (size_t i = 0; i < inputNodesNum; i++)
137
+ {
138
+ Ort::AllocatedStringPtr input_node_name = session->GetInputNameAllocated(i, allocator);
139
+ char* temp_buf = new char[50];
140
+ strcpy(temp_buf, input_node_name.get());
141
+ inputNodeNames.push_back(temp_buf);
142
+ }
143
+ size_t OutputNodesNum = session->GetOutputCount();
144
+ for (size_t i = 0; i < OutputNodesNum; i++)
145
+ {
146
+ Ort::AllocatedStringPtr output_node_name = session->GetOutputNameAllocated(i, allocator);
147
+ char* temp_buf = new char[10];
148
+ strcpy(temp_buf, output_node_name.get());
149
+ outputNodeNames.push_back(temp_buf);
150
+ }
151
+ options = Ort::RunOptions{ nullptr };
152
+ WarmUpSession();
153
+ return RET_OK;
154
+ }
155
+ catch (const std::exception& e)
156
+ {
157
+ const char* str1 = "[YOLO_V8]:";
158
+ const char* str2 = e.what();
159
+ std::string result = std::string(str1) + std::string(str2);
160
+ char* merged = new char[result.length() + 1];
161
+ std::strcpy(merged, result.c_str());
162
+ std::cout << merged << std::endl;
163
+ delete[] merged;
164
+ return "[YOLO_V8]:Create session failed.";
165
+ }
166
+
167
+ }
168
+
169
+
170
+ char* YOLO_V8::RunSession(cv::Mat& iImg, std::vector<DL_RESULT>& oResult) {
171
+ #ifdef benchmark
172
+ clock_t starttime_1 = clock();
173
+ #endif // benchmark
174
+
175
+ char* Ret = RET_OK;
176
+ cv::Mat processedImg;
177
+ PreProcess(iImg, imgSize, processedImg);
178
+ if (modelType < 4)
179
+ {
180
+ float* blob = new float[processedImg.total() * 3];
181
+ BlobFromImage(processedImg, blob);
182
+ std::vector<int64_t> inputNodeDims = { 1, 3, imgSize.at(0), imgSize.at(1) };
183
+ TensorProcess(starttime_1, iImg, blob, inputNodeDims, oResult);
184
+ }
185
+ else
186
+ {
187
+ #ifdef USE_CUDA
188
+ half* blob = new half[processedImg.total() * 3];
189
+ BlobFromImage(processedImg, blob);
190
+ std::vector<int64_t> inputNodeDims = { 1,3,imgSize.at(0),imgSize.at(1) };
191
+ TensorProcess(starttime_1, iImg, blob, inputNodeDims, oResult);
192
+ #endif
193
+ }
194
+
195
+ return Ret;
196
+ }
197
+
198
+
199
+ template<typename N>
200
+ char* YOLO_V8::TensorProcess(clock_t& starttime_1, cv::Mat& iImg, N& blob, std::vector<int64_t>& inputNodeDims,
201
+ std::vector<DL_RESULT>& oResult) {
202
+ Ort::Value inputTensor = Ort::Value::CreateTensor<typename std::remove_pointer<N>::type>(
203
+ Ort::MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeCPU), blob, 3 * imgSize.at(0) * imgSize.at(1),
204
+ inputNodeDims.data(), inputNodeDims.size());
205
+ #ifdef benchmark
206
+ clock_t starttime_2 = clock();
207
+ #endif // benchmark
208
+ auto outputTensor = session->Run(options, inputNodeNames.data(), &inputTensor, 1, outputNodeNames.data(),
209
+ outputNodeNames.size());
210
+ #ifdef benchmark
211
+ clock_t starttime_3 = clock();
212
+ #endif // benchmark
213
+
214
+ Ort::TypeInfo typeInfo = outputTensor.front().GetTypeInfo();
215
+ auto tensor_info = typeInfo.GetTensorTypeAndShapeInfo();
216
+ std::vector<int64_t> outputNodeDims = tensor_info.GetShape();
217
+ auto output = outputTensor.front().GetTensorMutableData<typename std::remove_pointer<N>::type>();
218
+ delete[] blob;
219
+ switch (modelType)
220
+ {
221
+ case YOLO_DETECT_V8:
222
+ case YOLO_DETECT_V8_HALF:
223
+ {
224
+ int signalResultNum = outputNodeDims[1];//84
225
+ int strideNum = outputNodeDims[2];//8400
226
+ std::vector<int> class_ids;
227
+ std::vector<float> confidences;
228
+ std::vector<cv::Rect> boxes;
229
+ cv::Mat rawData;
230
+ if (modelType == YOLO_DETECT_V8)
231
+ {
232
+ // FP32
233
+ rawData = cv::Mat(signalResultNum, strideNum, CV_32F, output);
234
+ }
235
+ else
236
+ {
237
+ // FP16
238
+ rawData = cv::Mat(signalResultNum, strideNum, CV_16F, output);
239
+ rawData.convertTo(rawData, CV_32F);
240
+ }
241
+ // Note:
242
+ // ultralytics add transpose operator to the output of yolov8 model.which make yolov8/v5/v7 has same shape
243
+ // https://github.com/ultralytics/assets/releases/download/v8.3.0/yolov8n.pt
244
+ rawData = rawData.t();
245
+
246
+ float* data = (float*)rawData.data;
247
+
248
+ for (int i = 0; i < strideNum; ++i)
249
+ {
250
+ float* classesScores = data + 4;
251
+ cv::Mat scores(1, this->classes.size(), CV_32FC1, classesScores);
252
+ cv::Point class_id;
253
+ double maxClassScore;
254
+ cv::minMaxLoc(scores, 0, &maxClassScore, 0, &class_id);
255
+ if (maxClassScore > rectConfidenceThreshold)
256
+ {
257
+ confidences.push_back(maxClassScore);
258
+ class_ids.push_back(class_id.x);
259
+ float x = data[0];
260
+ float y = data[1];
261
+ float w = data[2];
262
+ float h = data[3];
263
+
264
+ int left = int((x - 0.5 * w) * resizeScales);
265
+ int top = int((y - 0.5 * h) * resizeScales);
266
+
267
+ int width = int(w * resizeScales);
268
+ int height = int(h * resizeScales);
269
+
270
+ boxes.push_back(cv::Rect(left, top, width, height));
271
+ }
272
+ data += signalResultNum;
273
+ }
274
+ std::vector<int> nmsResult;
275
+ cv::dnn::NMSBoxes(boxes, confidences, rectConfidenceThreshold, iouThreshold, nmsResult);
276
+ for (int i = 0; i < nmsResult.size(); ++i)
277
+ {
278
+ int idx = nmsResult[i];
279
+ DL_RESULT result;
280
+ result.classId = class_ids[idx];
281
+ result.confidence = confidences[idx];
282
+ result.box = boxes[idx];
283
+ oResult.push_back(result);
284
+ }
285
+
286
+ #ifdef benchmark
287
+ clock_t starttime_4 = clock();
288
+ double pre_process_time = (double)(starttime_2 - starttime_1) / CLOCKS_PER_SEC * 1000;
289
+ double process_time = (double)(starttime_3 - starttime_2) / CLOCKS_PER_SEC * 1000;
290
+ double post_process_time = (double)(starttime_4 - starttime_3) / CLOCKS_PER_SEC * 1000;
291
+ if (cudaEnable)
292
+ {
293
+ std::cout << "[YOLO_V8(CUDA)]: " << pre_process_time << "ms pre-process, " << process_time << "ms inference, " << post_process_time << "ms post-process." << std::endl;
294
+ }
295
+ else
296
+ {
297
+ std::cout << "[YOLO_V8(CPU)]: " << pre_process_time << "ms pre-process, " << process_time << "ms inference, " << post_process_time << "ms post-process." << std::endl;
298
+ }
299
+ #endif // benchmark
300
+
301
+ break;
302
+ }
303
+ case YOLO_CLS:
304
+ case YOLO_CLS_HALF:
305
+ {
306
+ cv::Mat rawData;
307
+ if (modelType == YOLO_CLS) {
308
+ // FP32
309
+ rawData = cv::Mat(1, this->classes.size(), CV_32F, output);
310
+ } else {
311
+ // FP16
312
+ rawData = cv::Mat(1, this->classes.size(), CV_16F, output);
313
+ rawData.convertTo(rawData, CV_32F);
314
+ }
315
+ float *data = (float *) rawData.data;
316
+
317
+ DL_RESULT result;
318
+ for (int i = 0; i < this->classes.size(); i++)
319
+ {
320
+ result.classId = i;
321
+ result.confidence = data[i];
322
+ oResult.push_back(result);
323
+ }
324
+ break;
325
+ }
326
+ default:
327
+ std::cout << "[YOLO_V8]: " << "Not support model type." << std::endl;
328
+ }
329
+ return RET_OK;
330
+
331
+ }
332
+
333
+
334
+ char* YOLO_V8::WarmUpSession() {
335
+ clock_t starttime_1 = clock();
336
+ cv::Mat iImg = cv::Mat(cv::Size(imgSize.at(0), imgSize.at(1)), CV_8UC3);
337
+ cv::Mat processedImg;
338
+ PreProcess(iImg, imgSize, processedImg);
339
+ if (modelType < 4)
340
+ {
341
+ float* blob = new float[iImg.total() * 3];
342
+ BlobFromImage(processedImg, blob);
343
+ std::vector<int64_t> YOLO_input_node_dims = { 1, 3, imgSize.at(0), imgSize.at(1) };
344
+ Ort::Value input_tensor = Ort::Value::CreateTensor<float>(
345
+ Ort::MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeCPU), blob, 3 * imgSize.at(0) * imgSize.at(1),
346
+ YOLO_input_node_dims.data(), YOLO_input_node_dims.size());
347
+ auto output_tensors = session->Run(options, inputNodeNames.data(), &input_tensor, 1, outputNodeNames.data(),
348
+ outputNodeNames.size());
349
+ delete[] blob;
350
+ clock_t starttime_4 = clock();
351
+ double post_process_time = (double)(starttime_4 - starttime_1) / CLOCKS_PER_SEC * 1000;
352
+ if (cudaEnable)
353
+ {
354
+ std::cout << "[YOLO_V8(CUDA)]: " << "Cuda warm-up cost " << post_process_time << " ms. " << std::endl;
355
+ }
356
+ }
357
+ else
358
+ {
359
+ #ifdef USE_CUDA
360
+ half* blob = new half[iImg.total() * 3];
361
+ BlobFromImage(processedImg, blob);
362
+ std::vector<int64_t> YOLO_input_node_dims = { 1,3,imgSize.at(0),imgSize.at(1) };
363
+ Ort::Value input_tensor = Ort::Value::CreateTensor<half>(Ort::MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeCPU), blob, 3 * imgSize.at(0) * imgSize.at(1), YOLO_input_node_dims.data(), YOLO_input_node_dims.size());
364
+ auto output_tensors = session->Run(options, inputNodeNames.data(), &input_tensor, 1, outputNodeNames.data(), outputNodeNames.size());
365
+ delete[] blob;
366
+ clock_t starttime_4 = clock();
367
+ double post_process_time = (double)(starttime_4 - starttime_1) / CLOCKS_PER_SEC * 1000;
368
+ if (cudaEnable)
369
+ {
370
+ std::cout << "[YOLO_V8(CUDA)]: " << "Cuda warm-up cost " << post_process_time << " ms. " << std::endl;
371
+ }
372
+ #endif
373
+ }
374
+ return RET_OK;
375
+ }
yolov12/examples/YOLOv8-ONNXRuntime-CPP/inference.h ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ #define RET_OK nullptr
4
+
5
+ #ifdef _WIN32
6
+ #include <Windows.h>
7
+ #include <direct.h>
8
+ #include <io.h>
9
+ #endif
10
+
11
+ #include <string>
12
+ #include <vector>
13
+ #include <cstdio>
14
+ #include <opencv2/opencv.hpp>
15
+ #include "onnxruntime_cxx_api.h"
16
+
17
+ #ifdef USE_CUDA
18
+ #include <cuda_fp16.h>
19
+ #endif
20
+
21
+
22
+ enum MODEL_TYPE
23
+ {
24
+ //FLOAT32 MODEL
25
+ YOLO_DETECT_V8 = 1,
26
+ YOLO_POSE = 2,
27
+ YOLO_CLS = 3,
28
+
29
+ //FLOAT16 MODEL
30
+ YOLO_DETECT_V8_HALF = 4,
31
+ YOLO_POSE_V8_HALF = 5,
32
+ YOLO_CLS_HALF = 6
33
+ };
34
+
35
+
36
+ typedef struct _DL_INIT_PARAM
37
+ {
38
+ std::string modelPath;
39
+ MODEL_TYPE modelType = YOLO_DETECT_V8;
40
+ std::vector<int> imgSize = { 640, 640 };
41
+ float rectConfidenceThreshold = 0.6;
42
+ float iouThreshold = 0.5;
43
+ int keyPointsNum = 2;//Note:kpt number for pose
44
+ bool cudaEnable = false;
45
+ int logSeverityLevel = 3;
46
+ int intraOpNumThreads = 1;
47
+ } DL_INIT_PARAM;
48
+
49
+
50
+ typedef struct _DL_RESULT
51
+ {
52
+ int classId;
53
+ float confidence;
54
+ cv::Rect box;
55
+ std::vector<cv::Point2f> keyPoints;
56
+ } DL_RESULT;
57
+
58
+
59
+ class YOLO_V8
60
+ {
61
+ public:
62
+ YOLO_V8();
63
+
64
+ ~YOLO_V8();
65
+
66
+ public:
67
+ char* CreateSession(DL_INIT_PARAM& iParams);
68
+
69
+ char* RunSession(cv::Mat& iImg, std::vector<DL_RESULT>& oResult);
70
+
71
+ char* WarmUpSession();
72
+
73
+ template<typename N>
74
+ char* TensorProcess(clock_t& starttime_1, cv::Mat& iImg, N& blob, std::vector<int64_t>& inputNodeDims,
75
+ std::vector<DL_RESULT>& oResult);
76
+
77
+ char* PreProcess(cv::Mat& iImg, std::vector<int> iImgSize, cv::Mat& oImg);
78
+
79
+ std::vector<std::string> classes{};
80
+
81
+ private:
82
+ Ort::Env env;
83
+ Ort::Session* session;
84
+ bool cudaEnable;
85
+ Ort::RunOptions options;
86
+ std::vector<const char*> inputNodeNames;
87
+ std::vector<const char*> outputNodeNames;
88
+
89
+ MODEL_TYPE modelType;
90
+ std::vector<int> imgSize;
91
+ float rectConfidenceThreshold;
92
+ float iouThreshold;
93
+ float resizeScales;//letterbox scale
94
+ };
yolov12/examples/YOLOv8-ONNXRuntime-CPP/main.cpp ADDED
@@ -0,0 +1,193 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #include <iostream>
2
+ #include <iomanip>
3
+ #include "inference.h"
4
+ #include <filesystem>
5
+ #include <fstream>
6
+ #include <random>
7
+
8
+ void Detector(YOLO_V8*& p) {
9
+ std::filesystem::path current_path = std::filesystem::current_path();
10
+ std::filesystem::path imgs_path = current_path / "images";
11
+ for (auto& i : std::filesystem::directory_iterator(imgs_path))
12
+ {
13
+ if (i.path().extension() == ".jpg" || i.path().extension() == ".png" || i.path().extension() == ".jpeg")
14
+ {
15
+ std::string img_path = i.path().string();
16
+ cv::Mat img = cv::imread(img_path);
17
+ std::vector<DL_RESULT> res;
18
+ p->RunSession(img, res);
19
+
20
+ for (auto& re : res)
21
+ {
22
+ cv::RNG rng(cv::getTickCount());
23
+ cv::Scalar color(rng.uniform(0, 256), rng.uniform(0, 256), rng.uniform(0, 256));
24
+
25
+ cv::rectangle(img, re.box, color, 3);
26
+
27
+ float confidence = floor(100 * re.confidence) / 100;
28
+ std::cout << std::fixed << std::setprecision(2);
29
+ std::string label = p->classes[re.classId] + " " +
30
+ std::to_string(confidence).substr(0, std::to_string(confidence).size() - 4);
31
+
32
+ cv::rectangle(
33
+ img,
34
+ cv::Point(re.box.x, re.box.y - 25),
35
+ cv::Point(re.box.x + label.length() * 15, re.box.y),
36
+ color,
37
+ cv::FILLED
38
+ );
39
+
40
+ cv::putText(
41
+ img,
42
+ label,
43
+ cv::Point(re.box.x, re.box.y - 5),
44
+ cv::FONT_HERSHEY_SIMPLEX,
45
+ 0.75,
46
+ cv::Scalar(0, 0, 0),
47
+ 2
48
+ );
49
+
50
+
51
+ }
52
+ std::cout << "Press any key to exit" << std::endl;
53
+ cv::imshow("Result of Detection", img);
54
+ cv::waitKey(0);
55
+ cv::destroyAllWindows();
56
+ }
57
+ }
58
+ }
59
+
60
+
61
+ void Classifier(YOLO_V8*& p)
62
+ {
63
+ std::filesystem::path current_path = std::filesystem::current_path();
64
+ std::filesystem::path imgs_path = current_path;// / "images"
65
+ std::random_device rd;
66
+ std::mt19937 gen(rd());
67
+ std::uniform_int_distribution<int> dis(0, 255);
68
+ for (auto& i : std::filesystem::directory_iterator(imgs_path))
69
+ {
70
+ if (i.path().extension() == ".jpg" || i.path().extension() == ".png")
71
+ {
72
+ std::string img_path = i.path().string();
73
+ //std::cout << img_path << std::endl;
74
+ cv::Mat img = cv::imread(img_path);
75
+ std::vector<DL_RESULT> res;
76
+ char* ret = p->RunSession(img, res);
77
+
78
+ float positionY = 50;
79
+ for (int i = 0; i < res.size(); i++)
80
+ {
81
+ int r = dis(gen);
82
+ int g = dis(gen);
83
+ int b = dis(gen);
84
+ cv::putText(img, std::to_string(i) + ":", cv::Point(10, positionY), cv::FONT_HERSHEY_SIMPLEX, 1, cv::Scalar(b, g, r), 2);
85
+ cv::putText(img, std::to_string(res.at(i).confidence), cv::Point(70, positionY), cv::FONT_HERSHEY_SIMPLEX, 1, cv::Scalar(b, g, r), 2);
86
+ positionY += 50;
87
+ }
88
+
89
+ cv::imshow("TEST_CLS", img);
90
+ cv::waitKey(0);
91
+ cv::destroyAllWindows();
92
+ //cv::imwrite("E:\\output\\" + std::to_string(k) + ".png", img);
93
+ }
94
+
95
+ }
96
+ }
97
+
98
+
99
+
100
+ int ReadCocoYaml(YOLO_V8*& p) {
101
+ // Open the YAML file
102
+ std::ifstream file("coco.yaml");
103
+ if (!file.is_open())
104
+ {
105
+ std::cerr << "Failed to open file" << std::endl;
106
+ return 1;
107
+ }
108
+
109
+ // Read the file line by line
110
+ std::string line;
111
+ std::vector<std::string> lines;
112
+ while (std::getline(file, line))
113
+ {
114
+ lines.push_back(line);
115
+ }
116
+
117
+ // Find the start and end of the names section
118
+ std::size_t start = 0;
119
+ std::size_t end = 0;
120
+ for (std::size_t i = 0; i < lines.size(); i++)
121
+ {
122
+ if (lines[i].find("names:") != std::string::npos)
123
+ {
124
+ start = i + 1;
125
+ }
126
+ else if (start > 0 && lines[i].find(':') == std::string::npos)
127
+ {
128
+ end = i;
129
+ break;
130
+ }
131
+ }
132
+
133
+ // Extract the names
134
+ std::vector<std::string> names;
135
+ for (std::size_t i = start; i < end; i++)
136
+ {
137
+ std::stringstream ss(lines[i]);
138
+ std::string name;
139
+ std::getline(ss, name, ':'); // Extract the number before the delimiter
140
+ std::getline(ss, name); // Extract the string after the delimiter
141
+ names.push_back(name);
142
+ }
143
+
144
+ p->classes = names;
145
+ return 0;
146
+ }
147
+
148
+
149
+ void DetectTest()
150
+ {
151
+ YOLO_V8* yoloDetector = new YOLO_V8;
152
+ ReadCocoYaml(yoloDetector);
153
+ DL_INIT_PARAM params;
154
+ params.rectConfidenceThreshold = 0.1;
155
+ params.iouThreshold = 0.5;
156
+ params.modelPath = "yolov8n.onnx";
157
+ params.imgSize = { 640, 640 };
158
+ #ifdef USE_CUDA
159
+ params.cudaEnable = true;
160
+
161
+ // GPU FP32 inference
162
+ params.modelType = YOLO_DETECT_V8;
163
+ // GPU FP16 inference
164
+ //Note: change fp16 onnx model
165
+ //params.modelType = YOLO_DETECT_V8_HALF;
166
+
167
+ #else
168
+ // CPU inference
169
+ params.modelType = YOLO_DETECT_V8;
170
+ params.cudaEnable = false;
171
+
172
+ #endif
173
+ yoloDetector->CreateSession(params);
174
+ Detector(yoloDetector);
175
+ }
176
+
177
+
178
+ void ClsTest()
179
+ {
180
+ YOLO_V8* yoloDetector = new YOLO_V8;
181
+ std::string model_path = "cls.onnx";
182
+ ReadCocoYaml(yoloDetector);
183
+ DL_INIT_PARAM params{ model_path, YOLO_CLS, {224, 224} };
184
+ yoloDetector->CreateSession(params);
185
+ Classifier(yoloDetector);
186
+ }
187
+
188
+
189
+ int main()
190
+ {
191
+ //DetectTest();
192
+ ClsTest();
193
+ }
yolov12/examples/YOLOv8-ONNXRuntime-Rust/Cargo.toml ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
+
3
+ [package]
4
+ name = "yolov8-rs"
5
+ version = "0.1.0"
6
+ edition = "2021"
7
+
8
+ # See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html
9
+
10
+ [dependencies]
11
+ clap = { version = "4.2.4", features = ["derive"] }
12
+ image = { version = "0.25.2"}
13
+ imageproc = { version = "0.25.0"}
14
+ ndarray = { version = "0.16" }
15
+ ort = { version = "2.0.0-rc.5", features = ["cuda", "tensorrt", "load-dynamic", "copy-dylibs", "half"]}
16
+ rusttype = { version = "0.9.3" }
17
+ anyhow = { version = "1.0.75" }
18
+ regex = { version = "1.5.4" }
19
+ rand = { version = "0.8.5" }
20
+ chrono = { version = "0.4.30" }
21
+ half = { version = "2.3.1" }
22
+ dirs = { version = "5.0.1" }
23
+ ureq = { version = "2.9.1" }
24
+ ab_glyph = "0.2.29"
yolov12/examples/YOLOv8-ONNXRuntime-Rust/README.md ADDED
@@ -0,0 +1,212 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv8-ONNXRuntime-Rust for All the Key YOLO Tasks
2
+
3
+ This repository provides a Rust demo for performing YOLOv8 tasks like `Classification`, `Segmentation`, `Detection`, `Pose Detection` and `OBB` using ONNXRuntime.
4
+
5
+ ## Recently Updated
6
+
7
+ - Add YOLOv8-OBB demo
8
+ - Update ONNXRuntime to 1.19.x
9
+
10
+ Newly updated YOLOv8 example code is located in [this repository](https://github.com/jamjamjon/usls/tree/main/examples/yolo)
11
+
12
+ ## Features
13
+
14
+ - Support `Classification`, `Segmentation`, `Detection`, `Pose(Keypoints)-Detection`, `OBB` tasks.
15
+ - Support `FP16` & `FP32` ONNX models.
16
+ - Support `CPU`, `CUDA` and `TensorRT` execution provider to accelerate computation.
17
+ - Support dynamic input shapes(`batch`, `width`, `height`).
18
+
19
+ ## Installation
20
+
21
+ ### 1. Install Rust
22
+
23
+ Please follow the Rust official installation. (https://www.rust-lang.org/tools/install)
24
+
25
+ ### 2. ONNXRuntime Linking
26
+
27
+ - #### For detailed setup instructions, refer to the [ORT documentation](https://ort.pyke.io/setup/linking).
28
+
29
+ - #### For Linux or macOS Users:
30
+ - Download the ONNX Runtime package from the [Releases page](https://github.com/microsoft/onnxruntime/releases).
31
+ - Set up the library path by exporting the `ORT_DYLIB_PATH` environment variable:
32
+ ```shell
33
+ export ORT_DYLIB_PATH=/path/to/onnxruntime/lib/libonnxruntime.so.1.19.0
34
+ ```
35
+
36
+ ### 3. \[Optional\] Install CUDA & CuDNN & TensorRT
37
+
38
+ - CUDA execution provider requires CUDA v11.6+.
39
+ - TensorRT execution provider requires CUDA v11.4+ and TensorRT v8.4+.
40
+
41
+ ## Get Started
42
+
43
+ ### 1. Export the YOLOv8 ONNX Models
44
+
45
+ ```bash
46
+ pip install -U ultralytics
47
+
48
+ # export onnx model with dynamic shapes
49
+ yolo export model=yolov8m.pt format=onnx simplify dynamic
50
+ yolo export model=yolov8m-cls.pt format=onnx simplify dynamic
51
+ yolo export model=yolov8m-pose.pt format=onnx simplify dynamic
52
+ yolo export model=yolov8m-seg.pt format=onnx simplify dynamic
53
+
54
+
55
+ # export onnx model with constant shapes
56
+ yolo export model=yolov8m.pt format=onnx simplify
57
+ yolo export model=yolov8m-cls.pt format=onnx simplify
58
+ yolo export model=yolov8m-pose.pt format=onnx simplify
59
+ yolo export model=yolov8m-seg.pt format=onnx simplify
60
+ ```
61
+
62
+ ### 2. Run Inference
63
+
64
+ It will perform inference with the ONNX model on the source image.
65
+
66
+ ```bash
67
+ cargo run --release -- --model <MODEL> --source <SOURCE>
68
+ ```
69
+
70
+ Set `--cuda` to use CUDA execution provider to speed up inference.
71
+
72
+ ```bash
73
+ cargo run --release -- --cuda --model <MODEL> --source <SOURCE>
74
+ ```
75
+
76
+ Set `--trt` to use TensorRT execution provider, and you can set `--fp16` at the same time to use TensorRT FP16 engine.
77
+
78
+ ```bash
79
+ cargo run --release -- --trt --fp16 --model <MODEL> --source <SOURCE>
80
+ ```
81
+
82
+ Set `--device_id` to select which device to run. When you have only one GPU, and you set `device_id` to 1 will not cause program panic, the `ort` would automatically fall back to `CPU` EP.
83
+
84
+ ```bash
85
+ cargo run --release -- --cuda --device_id 0 --model <MODEL> --source <SOURCE>
86
+ ```
87
+
88
+ Set `--batch` to do multi-batch-size inference.
89
+
90
+ If you're using `--trt`, you can also set `--batch-min` and `--batch-max` to explicitly specify min/max/opt batch for dynamic batch input.(https://onnxruntime.ai/docs/execution-providers/TensorRT-ExecutionProvider.html#explicit-shape-range-for-dynamic-shape-input).(Note that the ONNX model should be exported with dynamic shapes.)
91
+
92
+ ```bash
93
+ cargo run --release -- --cuda --batch 2 --model <MODEL> --source <SOURCE>
94
+ ```
95
+
96
+ Set `--height` and `--width` to do dynamic image size inference. (Note that the ONNX model should be exported with dynamic shapes.)
97
+
98
+ ```bash
99
+ cargo run --release -- --cuda --width 480 --height 640 --model <MODEL> --source <SOURCE>
100
+ ```
101
+
102
+ Set `--profile` to check time consumed in each stage.(Note that the model usually needs to take 1~3 times dry run to warmup. Make sure to run enough times to evaluate the result.)
103
+
104
+ ```bash
105
+ cargo run --release -- --trt --fp16 --profile --model <MODEL> --source <SOURCE>
106
+ ```
107
+
108
+ Results: (yolov8m.onnx, batch=1, 3 times, trt, fp16, RTX 3060Ti)
109
+
110
+ ```bash
111
+ ==> 0
112
+ [Model Preprocess]: 12.75788ms
113
+ [ORT H2D]: 237.118µs
114
+ [ORT Inference]: 507.895469ms
115
+ [ORT D2H]: 191.655µs
116
+ [Model Inference]: 508.34589ms
117
+ [Model Postprocess]: 1.061122ms
118
+ ==> 1
119
+ [Model Preprocess]: 13.658655ms
120
+ [ORT H2D]: 209.975µs
121
+ [ORT Inference]: 5.12372ms
122
+ [ORT D2H]: 182.389µs
123
+ [Model Inference]: 5.530022ms
124
+ [Model Postprocess]: 1.04851ms
125
+ ==> 2
126
+ [Model Preprocess]: 12.475332ms
127
+ [ORT H2D]: 246.127µs
128
+ [ORT Inference]: 5.048432ms
129
+ [ORT D2H]: 187.117µs
130
+ [Model Inference]: 5.493119ms
131
+ [Model Postprocess]: 1.040906ms
132
+ ```
133
+
134
+ And also:
135
+
136
+ `--conf`: confidence threshold \[default: 0.3\]
137
+
138
+ `--iou`: iou threshold in NMS \[default: 0.45\]
139
+
140
+ `--kconf`: confidence threshold of keypoint \[default: 0.55\]
141
+
142
+ `--plot`: plot inference result with random RGB color and save
143
+
144
+ you can check out all CLI arguments by:
145
+
146
+ ```bash
147
+ git clone https://github.com/ultralytics/ultralytics
148
+ cd ultralytics/examples/YOLOv8-ONNXRuntime-Rust
149
+ cargo run --release -- --help
150
+ ```
151
+
152
+ ## Examples
153
+
154
+ ![Ultralytics YOLO Tasks](https://raw.githubusercontent.com/ultralytics/assets/main/im/banner-tasks.png)
155
+
156
+ ### Classification
157
+
158
+ Running dynamic shape ONNX model on `CPU` with image size `--height 224 --width 224`. Saving plotted image in `runs` directory.
159
+
160
+ ```bash
161
+ cargo run --release -- --model ../assets/weights/yolov8m-cls-dyn.onnx --source ../assets/images/dog.jpg --height 224 --width 224 --plot --profile
162
+ ```
163
+
164
+ You will see result like:
165
+
166
+ ```bash
167
+ Summary:
168
+ > Task: Classify (Ultralytics 8.0.217)
169
+ > EP: Cpu
170
+ > Dtype: Float32
171
+ > Batch: 1 (Dynamic), Height: 224 (Dynamic), Width: 224 (Dynamic)
172
+ > nc: 1000 nk: 0, nm: 0, conf: 0.3, kconf: 0.55, iou: 0.45
173
+
174
+ [Model Preprocess]: 16.363477ms
175
+ [ORT H2D]: 50.722µs
176
+ [ORT Inference]: 16.295808ms
177
+ [ORT D2H]: 8.37µs
178
+ [Model Inference]: 16.367046ms
179
+ [Model Postprocess]: 3.527µs
180
+ [
181
+ YOLOResult {
182
+ Probs(top5): Some([(208, 0.6950566), (209, 0.13823675), (178, 0.04849795), (215, 0.019029364), (212, 0.016506357)]),
183
+ Bboxes: None,
184
+ Keypoints: None,
185
+ Masks: None,
186
+ },
187
+ ]
188
+ ```
189
+
190
+ ### Object Detection
191
+
192
+ Using `CUDA` EP and dynamic image size `--height 640 --width 480`
193
+
194
+ ```bash
195
+ cargo run --release -- --cuda --model ../assets/weights/yolov8m-dynamic.onnx --source ../assets/images/bus.jpg --plot --height 640 --width 480
196
+ ```
197
+
198
+ ### Pose Detection
199
+
200
+ using `TensorRT` EP
201
+
202
+ ```bash
203
+ cargo run --release -- --trt --model ../assets/weights/yolov8m-pose.onnx --source ../assets/images/bus.jpg --plot
204
+ ```
205
+
206
+ ### Instance Segmentation
207
+
208
+ using `TensorRT` EP and FP16 model `--fp16`
209
+
210
+ ```bash
211
+ cargo run --release -- --trt --fp16 --model ../assets/weights/yolov8m-seg.onnx --source ../assets/images/0172.jpg --plot
212
+ ```
yolov12/examples/YOLOv8-ONNXRuntime-Rust/src/cli.rs ADDED
@@ -0,0 +1,87 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ use clap::Parser;
2
+
3
+ use crate::YOLOTask;
4
+
5
+ #[derive(Parser, Clone)]
6
+ #[command(author, version, about, long_about = None)]
7
+ pub struct Args {
8
+ /// ONNX model path
9
+ #[arg(long, required = true)]
10
+ pub model: String,
11
+
12
+ /// input path
13
+ #[arg(long, required = true)]
14
+ pub source: String,
15
+
16
+ /// device id
17
+ #[arg(long, default_value_t = 0)]
18
+ pub device_id: i32,
19
+
20
+ /// using TensorRT EP
21
+ #[arg(long)]
22
+ pub trt: bool,
23
+
24
+ /// using CUDA EP
25
+ #[arg(long)]
26
+ pub cuda: bool,
27
+
28
+ /// input batch size
29
+ #[arg(long, default_value_t = 1)]
30
+ pub batch: u32,
31
+
32
+ /// trt input min_batch size
33
+ #[arg(long, default_value_t = 1)]
34
+ pub batch_min: u32,
35
+
36
+ /// trt input max_batch size
37
+ #[arg(long, default_value_t = 32)]
38
+ pub batch_max: u32,
39
+
40
+ /// using TensorRT --fp16
41
+ #[arg(long)]
42
+ pub fp16: bool,
43
+
44
+ /// specify YOLO task
45
+ #[arg(long, value_enum)]
46
+ pub task: Option<YOLOTask>,
47
+
48
+ /// num_classes
49
+ #[arg(long)]
50
+ pub nc: Option<u32>,
51
+
52
+ /// num_keypoints
53
+ #[arg(long)]
54
+ pub nk: Option<u32>,
55
+
56
+ /// num_masks
57
+ #[arg(long)]
58
+ pub nm: Option<u32>,
59
+
60
+ /// input image width
61
+ #[arg(long)]
62
+ pub width: Option<u32>,
63
+
64
+ /// input image height
65
+ #[arg(long)]
66
+ pub height: Option<u32>,
67
+
68
+ /// confidence threshold
69
+ #[arg(long, required = false, default_value_t = 0.3)]
70
+ pub conf: f32,
71
+
72
+ /// iou threshold in NMS
73
+ #[arg(long, required = false, default_value_t = 0.45)]
74
+ pub iou: f32,
75
+
76
+ /// confidence threshold of keypoint
77
+ #[arg(long, required = false, default_value_t = 0.55)]
78
+ pub kconf: f32,
79
+
80
+ /// plot inference result and save
81
+ #[arg(long)]
82
+ pub plot: bool,
83
+
84
+ /// check time consumed in each stage
85
+ #[arg(long)]
86
+ pub profile: bool,
87
+ }
yolov12/examples/YOLOv8-ONNXRuntime-Rust/src/lib.rs ADDED
@@ -0,0 +1,160 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #![allow(clippy::type_complexity)]
2
+
3
+ use std::io::{Read, Write};
4
+
5
+ pub mod cli;
6
+ pub mod model;
7
+ pub mod ort_backend;
8
+ pub mod yolo_result;
9
+ pub use crate::cli::Args;
10
+ pub use crate::model::YOLOv8;
11
+ pub use crate::ort_backend::{Batch, OrtBackend, OrtConfig, OrtEP, YOLOTask};
12
+ pub use crate::yolo_result::{Bbox, Embedding, Point2, YOLOResult};
13
+
14
+ pub fn non_max_suppression(
15
+ xs: &mut Vec<(Bbox, Option<Vec<Point2>>, Option<Vec<f32>>)>,
16
+ iou_threshold: f32,
17
+ ) {
18
+ xs.sort_by(|b1, b2| b2.0.confidence().partial_cmp(&b1.0.confidence()).unwrap());
19
+
20
+ let mut current_index = 0;
21
+ for index in 0..xs.len() {
22
+ let mut drop = false;
23
+ for prev_index in 0..current_index {
24
+ let iou = xs[prev_index].0.iou(&xs[index].0);
25
+ if iou > iou_threshold {
26
+ drop = true;
27
+ break;
28
+ }
29
+ }
30
+ if !drop {
31
+ xs.swap(current_index, index);
32
+ current_index += 1;
33
+ }
34
+ }
35
+ xs.truncate(current_index);
36
+ }
37
+
38
+ pub fn gen_time_string(delimiter: &str) -> String {
39
+ let offset = chrono::FixedOffset::east_opt(8 * 60 * 60).unwrap(); // Beijing
40
+ let t_now = chrono::Utc::now().with_timezone(&offset);
41
+ let fmt = format!(
42
+ "%Y{}%m{}%d{}%H{}%M{}%S{}%f",
43
+ delimiter, delimiter, delimiter, delimiter, delimiter, delimiter
44
+ );
45
+ t_now.format(&fmt).to_string()
46
+ }
47
+
48
+ pub const SKELETON: [(usize, usize); 16] = [
49
+ (0, 1),
50
+ (0, 2),
51
+ (1, 3),
52
+ (2, 4),
53
+ (5, 6),
54
+ (5, 11),
55
+ (6, 12),
56
+ (11, 12),
57
+ (5, 7),
58
+ (6, 8),
59
+ (7, 9),
60
+ (8, 10),
61
+ (11, 13),
62
+ (12, 14),
63
+ (13, 15),
64
+ (14, 16),
65
+ ];
66
+
67
+ pub fn check_font(font: &str) -> rusttype::Font<'static> {
68
+ // check then load font
69
+
70
+ // ultralytics font path
71
+ let font_path_config = match dirs::config_dir() {
72
+ Some(mut d) => {
73
+ d.push("Ultralytics");
74
+ d.push(font);
75
+ d
76
+ }
77
+ None => panic!("Unsupported operating system. Now support Linux, MacOS, Windows."),
78
+ };
79
+
80
+ // current font path
81
+ let font_path_current = std::path::PathBuf::from(font);
82
+
83
+ // check font
84
+ let font_path = if font_path_config.exists() {
85
+ font_path_config
86
+ } else if font_path_current.exists() {
87
+ font_path_current
88
+ } else {
89
+ println!("Downloading font...");
90
+ let source_url = "https://ultralytics.com/assets/Arial.ttf";
91
+ let resp = ureq::get(source_url)
92
+ .timeout(std::time::Duration::from_secs(500))
93
+ .call()
94
+ .unwrap_or_else(|err| panic!("> Failed to download font: {source_url}: {err:?}"));
95
+
96
+ // read to buffer
97
+ let mut buffer = vec![];
98
+ let total_size = resp
99
+ .header("Content-Length")
100
+ .and_then(|s| s.parse::<u64>().ok())
101
+ .unwrap();
102
+ let _reader = resp
103
+ .into_reader()
104
+ .take(total_size)
105
+ .read_to_end(&mut buffer)
106
+ .unwrap();
107
+
108
+ // save
109
+ let _path = std::fs::File::create(font).unwrap();
110
+ let mut writer = std::io::BufWriter::new(_path);
111
+ writer.write_all(&buffer).unwrap();
112
+ println!("Font saved at: {:?}", font_path_current.display());
113
+ font_path_current
114
+ };
115
+
116
+ // load font
117
+ let buffer = std::fs::read(font_path).unwrap();
118
+ rusttype::Font::try_from_vec(buffer).unwrap()
119
+ }
120
+
121
+ use ab_glyph::FontArc;
122
+ pub fn load_font() -> FontArc {
123
+ use std::path::Path;
124
+ let font_path = Path::new("./font/Arial.ttf");
125
+ match font_path.try_exists() {
126
+ Ok(true) => {
127
+ let buffer = std::fs::read(font_path).unwrap();
128
+ FontArc::try_from_vec(buffer).unwrap()
129
+ }
130
+ Ok(false) => {
131
+ std::fs::create_dir_all("./font").unwrap();
132
+ println!("Downloading font...");
133
+ let source_url = "https://ultralytics.com/assets/Arial.ttf";
134
+ let resp = ureq::get(source_url)
135
+ .timeout(std::time::Duration::from_secs(500))
136
+ .call()
137
+ .unwrap_or_else(|err| panic!("> Failed to download font: {source_url}: {err:?}"));
138
+
139
+ // read to buffer
140
+ let mut buffer = vec![];
141
+ let total_size = resp
142
+ .header("Content-Length")
143
+ .and_then(|s| s.parse::<u64>().ok())
144
+ .unwrap();
145
+ let _reader = resp
146
+ .into_reader()
147
+ .take(total_size)
148
+ .read_to_end(&mut buffer)
149
+ .unwrap();
150
+ // save
151
+ let mut fd = std::fs::File::create(font_path).unwrap();
152
+ fd.write_all(&buffer).unwrap();
153
+ println!("Font saved at: {:?}", font_path.display());
154
+ FontArc::try_from_vec(buffer).unwrap()
155
+ }
156
+ Err(e) => {
157
+ panic!("Failed to load font {}", e);
158
+ }
159
+ }
160
+ }
yolov12/examples/YOLOv8-ONNXRuntime-Rust/src/main.rs ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ use clap::Parser;
2
+
3
+ use yolov8_rs::{Args, YOLOv8};
4
+
5
+ fn main() -> Result<(), Box<dyn std::error::Error>> {
6
+ let args = Args::parse();
7
+
8
+ // 1. load image
9
+ let x = image::ImageReader::open(&args.source)?
10
+ .with_guessed_format()?
11
+ .decode()?;
12
+
13
+ // 2. model support dynamic batch inference, so input should be a Vec
14
+ let xs = vec![x];
15
+
16
+ // You can test `--batch 2` with this
17
+ // let xs = vec![x.clone(), x];
18
+
19
+ // 3. build yolov8 model
20
+ let mut model = YOLOv8::new(args)?;
21
+ model.summary(); // model info
22
+
23
+ // 4. run
24
+ let ys = model.run(&xs)?;
25
+ println!("{:?}", ys);
26
+
27
+ Ok(())
28
+ }
yolov12/examples/YOLOv8-ONNXRuntime-Rust/src/model.rs ADDED
@@ -0,0 +1,651 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #![allow(clippy::type_complexity)]
2
+
3
+ use ab_glyph::FontArc;
4
+ use anyhow::Result;
5
+ use image::{DynamicImage, GenericImageView, ImageBuffer};
6
+ use ndarray::{s, Array, Axis, IxDyn};
7
+ use rand::{thread_rng, Rng};
8
+ use std::path::PathBuf;
9
+
10
+ use crate::{
11
+ gen_time_string, load_font, non_max_suppression, Args, Batch, Bbox, Embedding, OrtBackend,
12
+ OrtConfig, OrtEP, Point2, YOLOResult, YOLOTask, SKELETON,
13
+ };
14
+
15
+ pub struct YOLOv8 {
16
+ // YOLOv8 model for all yolo-tasks
17
+ engine: OrtBackend,
18
+ nc: u32,
19
+ nk: u32,
20
+ nm: u32,
21
+ height: u32,
22
+ width: u32,
23
+ batch: u32,
24
+ task: YOLOTask,
25
+ conf: f32,
26
+ kconf: f32,
27
+ iou: f32,
28
+ names: Vec<String>,
29
+ color_palette: Vec<(u8, u8, u8)>,
30
+ profile: bool,
31
+ plot: bool,
32
+ }
33
+
34
+ impl YOLOv8 {
35
+ pub fn new(config: Args) -> Result<Self> {
36
+ // execution provider
37
+ let ep = if config.trt {
38
+ OrtEP::Trt(config.device_id)
39
+ } else if config.cuda {
40
+ OrtEP::CUDA(config.device_id)
41
+ } else {
42
+ OrtEP::CPU
43
+ };
44
+
45
+ // batch
46
+ let batch = Batch {
47
+ opt: config.batch,
48
+ min: config.batch_min,
49
+ max: config.batch_max,
50
+ };
51
+
52
+ // build ort engine
53
+ let ort_args = OrtConfig {
54
+ ep,
55
+ batch,
56
+ f: config.model,
57
+ task: config.task,
58
+ trt_fp16: config.fp16,
59
+ image_size: (config.height, config.width),
60
+ };
61
+ let engine = OrtBackend::build(ort_args)?;
62
+
63
+ // get batch, height, width, tasks, nc, nk, nm
64
+ let (batch, height, width, task) = (
65
+ engine.batch(),
66
+ engine.height(),
67
+ engine.width(),
68
+ engine.task(),
69
+ );
70
+ let nc = engine.nc().or(config.nc).unwrap_or_else(|| {
71
+ panic!("Failed to get num_classes, make it explicit with `--nc`");
72
+ });
73
+ let (nk, nm) = match task {
74
+ YOLOTask::Pose => {
75
+ let nk = engine.nk().or(config.nk).unwrap_or_else(|| {
76
+ panic!("Failed to get num_keypoints, make it explicit with `--nk`");
77
+ });
78
+ (nk, 0)
79
+ }
80
+ YOLOTask::Segment => {
81
+ let nm = engine.nm().or(config.nm).unwrap_or_else(|| {
82
+ panic!("Failed to get num_masks, make it explicit with `--nm`");
83
+ });
84
+ (0, nm)
85
+ }
86
+ _ => (0, 0),
87
+ };
88
+
89
+ // class names
90
+ let names = engine.names().unwrap_or(vec!["Unknown".to_string()]);
91
+
92
+ // color palette
93
+ let mut rng = thread_rng();
94
+ let color_palette: Vec<_> = names
95
+ .iter()
96
+ .map(|_| {
97
+ (
98
+ rng.gen_range(0..=255),
99
+ rng.gen_range(0..=255),
100
+ rng.gen_range(0..=255),
101
+ )
102
+ })
103
+ .collect();
104
+
105
+ Ok(Self {
106
+ engine,
107
+ names,
108
+ conf: config.conf,
109
+ kconf: config.kconf,
110
+ iou: config.iou,
111
+ color_palette,
112
+ profile: config.profile,
113
+ plot: config.plot,
114
+ nc,
115
+ nk,
116
+ nm,
117
+ height,
118
+ width,
119
+ batch,
120
+ task,
121
+ })
122
+ }
123
+
124
+ pub fn scale_wh(&self, w0: f32, h0: f32, w1: f32, h1: f32) -> (f32, f32, f32) {
125
+ let r = (w1 / w0).min(h1 / h0);
126
+ (r, (w0 * r).round(), (h0 * r).round())
127
+ }
128
+
129
+ pub fn preprocess(&mut self, xs: &Vec<DynamicImage>) -> Result<Array<f32, IxDyn>> {
130
+ let mut ys =
131
+ Array::ones((xs.len(), 3, self.height() as usize, self.width() as usize)).into_dyn();
132
+ ys.fill(144.0 / 255.0);
133
+ for (idx, x) in xs.iter().enumerate() {
134
+ let img = match self.task() {
135
+ YOLOTask::Classify => x.resize_exact(
136
+ self.width(),
137
+ self.height(),
138
+ image::imageops::FilterType::Triangle,
139
+ ),
140
+ _ => {
141
+ let (w0, h0) = x.dimensions();
142
+ let w0 = w0 as f32;
143
+ let h0 = h0 as f32;
144
+ let (_, w_new, h_new) =
145
+ self.scale_wh(w0, h0, self.width() as f32, self.height() as f32); // f32 round
146
+ x.resize_exact(
147
+ w_new as u32,
148
+ h_new as u32,
149
+ if let YOLOTask::Segment = self.task() {
150
+ image::imageops::FilterType::CatmullRom
151
+ } else {
152
+ image::imageops::FilterType::Triangle
153
+ },
154
+ )
155
+ }
156
+ };
157
+
158
+ for (x, y, rgb) in img.pixels() {
159
+ let x = x as usize;
160
+ let y = y as usize;
161
+ let [r, g, b, _] = rgb.0;
162
+ ys[[idx, 0, y, x]] = (r as f32) / 255.0;
163
+ ys[[idx, 1, y, x]] = (g as f32) / 255.0;
164
+ ys[[idx, 2, y, x]] = (b as f32) / 255.0;
165
+ }
166
+ }
167
+
168
+ Ok(ys)
169
+ }
170
+
171
+ pub fn run(&mut self, xs: &Vec<DynamicImage>) -> Result<Vec<YOLOResult>> {
172
+ // pre-process
173
+ let t_pre = std::time::Instant::now();
174
+ let xs_ = self.preprocess(xs)?;
175
+ if self.profile {
176
+ println!("[Model Preprocess]: {:?}", t_pre.elapsed());
177
+ }
178
+
179
+ // run
180
+ let t_run = std::time::Instant::now();
181
+ let ys = self.engine.run(xs_, self.profile)?;
182
+ if self.profile {
183
+ println!("[Model Inference]: {:?}", t_run.elapsed());
184
+ }
185
+
186
+ // post-process
187
+ let t_post = std::time::Instant::now();
188
+ let ys = self.postprocess(ys, xs)?;
189
+ if self.profile {
190
+ println!("[Model Postprocess]: {:?}", t_post.elapsed());
191
+ }
192
+
193
+ // plot and save
194
+ if self.plot {
195
+ self.plot_and_save(&ys, xs, Some(&SKELETON));
196
+ }
197
+ Ok(ys)
198
+ }
199
+
200
+ pub fn postprocess(
201
+ &self,
202
+ xs: Vec<Array<f32, IxDyn>>,
203
+ xs0: &[DynamicImage],
204
+ ) -> Result<Vec<YOLOResult>> {
205
+ if let YOLOTask::Classify = self.task() {
206
+ let mut ys = Vec::new();
207
+ let preds = &xs[0];
208
+ for batch in preds.axis_iter(Axis(0)) {
209
+ ys.push(YOLOResult::new(
210
+ Some(Embedding::new(batch.into_owned())),
211
+ None,
212
+ None,
213
+ None,
214
+ ));
215
+ }
216
+ Ok(ys)
217
+ } else {
218
+ const CXYWH_OFFSET: usize = 4; // cxcywh
219
+ const KPT_STEP: usize = 3; // xyconf
220
+ let preds = &xs[0];
221
+ let protos = {
222
+ if xs.len() > 1 {
223
+ Some(&xs[1])
224
+ } else {
225
+ None
226
+ }
227
+ };
228
+ let mut ys = Vec::new();
229
+ for (idx, anchor) in preds.axis_iter(Axis(0)).enumerate() {
230
+ // [bs, 4 + nc + nm, anchors]
231
+ // input image
232
+ let width_original = xs0[idx].width() as f32;
233
+ let height_original = xs0[idx].height() as f32;
234
+ let ratio = (self.width() as f32 / width_original)
235
+ .min(self.height() as f32 / height_original);
236
+
237
+ // save each result
238
+ let mut data: Vec<(Bbox, Option<Vec<Point2>>, Option<Vec<f32>>)> = Vec::new();
239
+ for pred in anchor.axis_iter(Axis(1)) {
240
+ // split preds for different tasks
241
+ let bbox = pred.slice(s![0..CXYWH_OFFSET]);
242
+ let clss = pred.slice(s![CXYWH_OFFSET..CXYWH_OFFSET + self.nc() as usize]);
243
+ let kpts = {
244
+ if let YOLOTask::Pose = self.task() {
245
+ Some(pred.slice(s![pred.len() - KPT_STEP * self.nk() as usize..]))
246
+ } else {
247
+ None
248
+ }
249
+ };
250
+ let coefs = {
251
+ if let YOLOTask::Segment = self.task() {
252
+ Some(pred.slice(s![pred.len() - self.nm() as usize..]).to_vec())
253
+ } else {
254
+ None
255
+ }
256
+ };
257
+
258
+ // confidence and id
259
+ let (id, &confidence) = clss
260
+ .into_iter()
261
+ .enumerate()
262
+ .reduce(|max, x| if x.1 > max.1 { x } else { max })
263
+ .unwrap(); // definitely will not panic!
264
+
265
+ // confidence filter
266
+ if confidence < self.conf {
267
+ continue;
268
+ }
269
+
270
+ // bbox re-scale
271
+ let cx = bbox[0] / ratio;
272
+ let cy = bbox[1] / ratio;
273
+ let w = bbox[2] / ratio;
274
+ let h = bbox[3] / ratio;
275
+ let x = cx - w / 2.;
276
+ let y = cy - h / 2.;
277
+ let y_bbox = Bbox::new(
278
+ x.max(0.0f32).min(width_original),
279
+ y.max(0.0f32).min(height_original),
280
+ w,
281
+ h,
282
+ id,
283
+ confidence,
284
+ );
285
+
286
+ // kpts
287
+ let y_kpts = {
288
+ if let Some(kpts) = kpts {
289
+ let mut kpts_ = Vec::new();
290
+ // rescale
291
+ for i in 0..self.nk() as usize {
292
+ let kx = kpts[KPT_STEP * i] / ratio;
293
+ let ky = kpts[KPT_STEP * i + 1] / ratio;
294
+ let kconf = kpts[KPT_STEP * i + 2];
295
+ if kconf < self.kconf {
296
+ kpts_.push(Point2::default());
297
+ } else {
298
+ kpts_.push(Point2::new_with_conf(
299
+ kx.max(0.0f32).min(width_original),
300
+ ky.max(0.0f32).min(height_original),
301
+ kconf,
302
+ ));
303
+ }
304
+ }
305
+ Some(kpts_)
306
+ } else {
307
+ None
308
+ }
309
+ };
310
+
311
+ // data merged
312
+ data.push((y_bbox, y_kpts, coefs));
313
+ }
314
+
315
+ // nms
316
+ non_max_suppression(&mut data, self.iou);
317
+
318
+ // decode
319
+ let mut y_bboxes: Vec<Bbox> = Vec::new();
320
+ let mut y_kpts: Vec<Vec<Point2>> = Vec::new();
321
+ let mut y_masks: Vec<Vec<u8>> = Vec::new();
322
+ for elem in data.into_iter() {
323
+ if let Some(kpts) = elem.1 {
324
+ y_kpts.push(kpts)
325
+ }
326
+
327
+ // decode masks
328
+ if let Some(coefs) = elem.2 {
329
+ let proto = protos.unwrap().slice(s![idx, .., .., ..]);
330
+ let (nm, nh, nw) = proto.dim();
331
+
332
+ // coefs * proto -> mask
333
+ let coefs = Array::from_shape_vec((1, nm), coefs)?; // (n, nm)
334
+
335
+ let proto = proto.to_owned();
336
+ let proto = proto.to_shape((nm, nh * nw))?; // (nm, nh*nw)
337
+ let mask = coefs.dot(&proto); // (nh, nw, n)
338
+ let mask = mask.to_shape((nh, nw, 1))?;
339
+
340
+ // build image from ndarray
341
+ let mask_im: ImageBuffer<image::Luma<_>, Vec<f32>> =
342
+ match ImageBuffer::from_raw(
343
+ nw as u32,
344
+ nh as u32,
345
+ mask.to_owned().into_raw_vec_and_offset().0,
346
+ ) {
347
+ Some(image) => image,
348
+ None => panic!("can not create image from ndarray"),
349
+ };
350
+ let mut mask_im = image::DynamicImage::from(mask_im); // -> dyn
351
+
352
+ // rescale masks
353
+ let (_, w_mask, h_mask) =
354
+ self.scale_wh(width_original, height_original, nw as f32, nh as f32);
355
+ let mask_cropped = mask_im.crop(0, 0, w_mask as u32, h_mask as u32);
356
+ let mask_original = mask_cropped.resize_exact(
357
+ // resize_to_fill
358
+ width_original as u32,
359
+ height_original as u32,
360
+ match self.task() {
361
+ YOLOTask::Segment => image::imageops::FilterType::CatmullRom,
362
+ _ => image::imageops::FilterType::Triangle,
363
+ },
364
+ );
365
+
366
+ // crop-mask with bbox
367
+ let mut mask_original_cropped = mask_original.into_luma8();
368
+ for y in 0..height_original as usize {
369
+ for x in 0..width_original as usize {
370
+ if x < elem.0.xmin() as usize
371
+ || x > elem.0.xmax() as usize
372
+ || y < elem.0.ymin() as usize
373
+ || y > elem.0.ymax() as usize
374
+ {
375
+ mask_original_cropped.put_pixel(
376
+ x as u32,
377
+ y as u32,
378
+ image::Luma([0u8]),
379
+ );
380
+ }
381
+ }
382
+ }
383
+ y_masks.push(mask_original_cropped.into_raw());
384
+ }
385
+ y_bboxes.push(elem.0);
386
+ }
387
+
388
+ // save each result
389
+ let y = YOLOResult {
390
+ probs: None,
391
+ bboxes: if !y_bboxes.is_empty() {
392
+ Some(y_bboxes)
393
+ } else {
394
+ None
395
+ },
396
+ keypoints: if !y_kpts.is_empty() {
397
+ Some(y_kpts)
398
+ } else {
399
+ None
400
+ },
401
+ masks: if !y_masks.is_empty() {
402
+ Some(y_masks)
403
+ } else {
404
+ None
405
+ },
406
+ };
407
+ ys.push(y);
408
+ }
409
+
410
+ Ok(ys)
411
+ }
412
+ }
413
+
414
+ pub fn plot_and_save(
415
+ &self,
416
+ ys: &[YOLOResult],
417
+ xs0: &[DynamicImage],
418
+ skeletons: Option<&[(usize, usize)]>,
419
+ ) {
420
+ // check font then load
421
+ let font: FontArc = load_font();
422
+ for (_idb, (img0, y)) in xs0.iter().zip(ys.iter()).enumerate() {
423
+ let mut img = img0.to_rgb8();
424
+
425
+ // draw for classifier
426
+ if let Some(probs) = y.probs() {
427
+ for (i, k) in probs.topk(5).iter().enumerate() {
428
+ let legend = format!("{} {:.2}%", self.names[k.0], k.1);
429
+ let scale = 32;
430
+ let legend_size = img.width().max(img.height()) / scale;
431
+ let x = img.width() / 20;
432
+ let y = img.height() / 20 + i as u32 * legend_size;
433
+
434
+ imageproc::drawing::draw_text_mut(
435
+ &mut img,
436
+ image::Rgb([0, 255, 0]),
437
+ x as i32,
438
+ y as i32,
439
+ legend_size as f32,
440
+ &font,
441
+ &legend,
442
+ );
443
+ }
444
+ }
445
+
446
+ // draw bboxes & keypoints
447
+ if let Some(bboxes) = y.bboxes() {
448
+ for (_idx, bbox) in bboxes.iter().enumerate() {
449
+ // rect
450
+ imageproc::drawing::draw_hollow_rect_mut(
451
+ &mut img,
452
+ imageproc::rect::Rect::at(bbox.xmin() as i32, bbox.ymin() as i32)
453
+ .of_size(bbox.width() as u32, bbox.height() as u32),
454
+ image::Rgb(self.color_palette[bbox.id()].into()),
455
+ );
456
+
457
+ // text
458
+ let legend = format!("{} {:.2}%", self.names[bbox.id()], bbox.confidence());
459
+ let scale = 40;
460
+ let legend_size = img.width().max(img.height()) / scale;
461
+ imageproc::drawing::draw_text_mut(
462
+ &mut img,
463
+ image::Rgb(self.color_palette[bbox.id()].into()),
464
+ bbox.xmin() as i32,
465
+ (bbox.ymin() - legend_size as f32) as i32,
466
+ legend_size as f32,
467
+ &font,
468
+ &legend,
469
+ );
470
+ }
471
+ }
472
+
473
+ // draw kpts
474
+ if let Some(keypoints) = y.keypoints() {
475
+ for kpts in keypoints.iter() {
476
+ for kpt in kpts.iter() {
477
+ // filter
478
+ if kpt.confidence() < self.kconf {
479
+ continue;
480
+ }
481
+
482
+ // draw point
483
+ imageproc::drawing::draw_filled_circle_mut(
484
+ &mut img,
485
+ (kpt.x() as i32, kpt.y() as i32),
486
+ 2,
487
+ image::Rgb([0, 255, 0]),
488
+ );
489
+ }
490
+
491
+ // draw skeleton if has
492
+ if let Some(skeletons) = skeletons {
493
+ for &(idx1, idx2) in skeletons.iter() {
494
+ let kpt1 = &kpts[idx1];
495
+ let kpt2 = &kpts[idx2];
496
+ if kpt1.confidence() < self.kconf || kpt2.confidence() < self.kconf {
497
+ continue;
498
+ }
499
+ imageproc::drawing::draw_line_segment_mut(
500
+ &mut img,
501
+ (kpt1.x(), kpt1.y()),
502
+ (kpt2.x(), kpt2.y()),
503
+ image::Rgb([233, 14, 57]),
504
+ );
505
+ }
506
+ }
507
+ }
508
+ }
509
+
510
+ // draw mask
511
+ if let Some(masks) = y.masks() {
512
+ for (mask, _bbox) in masks.iter().zip(y.bboxes().unwrap().iter()) {
513
+ let mask_nd: ImageBuffer<image::Luma<_>, Vec<u8>> =
514
+ match ImageBuffer::from_vec(img.width(), img.height(), mask.to_vec()) {
515
+ Some(image) => image,
516
+ None => panic!("can not crate image from ndarray"),
517
+ };
518
+
519
+ for _x in 0..img.width() {
520
+ for _y in 0..img.height() {
521
+ let mask_p = imageproc::drawing::Canvas::get_pixel(&mask_nd, _x, _y);
522
+ if mask_p.0[0] > 0 {
523
+ let mut img_p = imageproc::drawing::Canvas::get_pixel(&img, _x, _y);
524
+ // img_p.0[2] = self.color_palette[bbox.id()].2 / 2;
525
+ // img_p.0[1] = self.color_palette[bbox.id()].1 / 2;
526
+ // img_p.0[0] = self.color_palette[bbox.id()].0 / 2;
527
+ img_p.0[2] /= 2;
528
+ img_p.0[1] = 255 - (255 - img_p.0[2]) / 2;
529
+ img_p.0[0] /= 2;
530
+ imageproc::drawing::Canvas::draw_pixel(&mut img, _x, _y, img_p)
531
+ }
532
+ }
533
+ }
534
+ }
535
+ }
536
+
537
+ // mkdir and save
538
+ let mut runs = PathBuf::from("runs");
539
+ if !runs.exists() {
540
+ std::fs::create_dir_all(&runs).unwrap();
541
+ }
542
+ runs.push(gen_time_string("-"));
543
+ let saveout = format!("{}.jpg", runs.to_str().unwrap());
544
+ let _ = img.save(saveout);
545
+ }
546
+ }
547
+
548
+ pub fn summary(&self) {
549
+ println!(
550
+ "\nSummary:\n\
551
+ > Task: {:?}{}\n\
552
+ > EP: {:?} {}\n\
553
+ > Dtype: {:?}\n\
554
+ > Batch: {} ({}), Height: {} ({}), Width: {} ({})\n\
555
+ > nc: {} nk: {}, nm: {}, conf: {}, kconf: {}, iou: {}\n\
556
+ ",
557
+ self.task(),
558
+ match self.engine.author().zip(self.engine.version()) {
559
+ Some((author, ver)) => format!(" ({} {})", author, ver),
560
+ None => String::from(""),
561
+ },
562
+ self.engine.ep(),
563
+ if let OrtEP::CPU = self.engine.ep() {
564
+ ""
565
+ } else {
566
+ "(May still fall back to CPU)"
567
+ },
568
+ self.engine.dtype(),
569
+ self.batch(),
570
+ if self.engine.is_batch_dynamic() {
571
+ "Dynamic"
572
+ } else {
573
+ "Const"
574
+ },
575
+ self.height(),
576
+ if self.engine.is_height_dynamic() {
577
+ "Dynamic"
578
+ } else {
579
+ "Const"
580
+ },
581
+ self.width(),
582
+ if self.engine.is_width_dynamic() {
583
+ "Dynamic"
584
+ } else {
585
+ "Const"
586
+ },
587
+ self.nc(),
588
+ self.nk(),
589
+ self.nm(),
590
+ self.conf,
591
+ self.kconf,
592
+ self.iou,
593
+ );
594
+ }
595
+
596
+ pub fn engine(&self) -> &OrtBackend {
597
+ &self.engine
598
+ }
599
+
600
+ pub fn conf(&self) -> f32 {
601
+ self.conf
602
+ }
603
+
604
+ pub fn set_conf(&mut self, val: f32) {
605
+ self.conf = val;
606
+ }
607
+
608
+ pub fn conf_mut(&mut self) -> &mut f32 {
609
+ &mut self.conf
610
+ }
611
+
612
+ pub fn kconf(&self) -> f32 {
613
+ self.kconf
614
+ }
615
+
616
+ pub fn iou(&self) -> f32 {
617
+ self.iou
618
+ }
619
+
620
+ pub fn task(&self) -> &YOLOTask {
621
+ &self.task
622
+ }
623
+
624
+ pub fn batch(&self) -> u32 {
625
+ self.batch
626
+ }
627
+
628
+ pub fn width(&self) -> u32 {
629
+ self.width
630
+ }
631
+
632
+ pub fn height(&self) -> u32 {
633
+ self.height
634
+ }
635
+
636
+ pub fn nc(&self) -> u32 {
637
+ self.nc
638
+ }
639
+
640
+ pub fn nk(&self) -> u32 {
641
+ self.nk
642
+ }
643
+
644
+ pub fn nm(&self) -> u32 {
645
+ self.nm
646
+ }
647
+
648
+ pub fn names(&self) -> &Vec<String> {
649
+ &self.names
650
+ }
651
+ }
yolov12/examples/YOLOv8-ONNXRuntime-Rust/src/ort_backend.rs ADDED
@@ -0,0 +1,553 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ use anyhow::Result;
2
+ use clap::ValueEnum;
3
+ use half::f16;
4
+ use ndarray::{Array, CowArray, IxDyn};
5
+ use ort::{
6
+ CPUExecutionProvider, CUDAExecutionProvider, ExecutionProvider, ExecutionProviderDispatch,
7
+ TensorRTExecutionProvider,
8
+ };
9
+ use ort::{Session, SessionBuilder};
10
+ use ort::{TensorElementType, ValueType};
11
+ use regex::Regex;
12
+ #[derive(Debug, Clone, PartialEq, Eq, PartialOrd, Ord, ValueEnum)]
13
+ pub enum YOLOTask {
14
+ // YOLO tasks
15
+ Classify,
16
+ Detect,
17
+ Pose,
18
+ Segment,
19
+ }
20
+
21
+ #[derive(Debug, Clone, PartialEq, Eq, PartialOrd, Ord)]
22
+ pub enum OrtEP {
23
+ // ONNXRuntime execution provider
24
+ CPU,
25
+ CUDA(i32),
26
+ Trt(i32),
27
+ }
28
+
29
+ #[derive(Debug)]
30
+ pub struct Batch {
31
+ pub opt: u32,
32
+ pub min: u32,
33
+ pub max: u32,
34
+ }
35
+
36
+ impl Default for Batch {
37
+ fn default() -> Self {
38
+ Self {
39
+ opt: 1,
40
+ min: 1,
41
+ max: 1,
42
+ }
43
+ }
44
+ }
45
+
46
+ #[derive(Debug, Default)]
47
+ pub struct OrtInputs {
48
+ // ONNX model inputs attrs
49
+ pub shapes: Vec<Vec<i64>>,
50
+ //pub dtypes: Vec<TensorElementDataType>,
51
+ pub dtypes: Vec<TensorElementType>,
52
+ pub names: Vec<String>,
53
+ pub sizes: Vec<Vec<u32>>,
54
+ }
55
+
56
+ impl OrtInputs {
57
+ pub fn new(session: &Session) -> Self {
58
+ let mut shapes = Vec::new();
59
+ let mut dtypes = Vec::new();
60
+ let mut names = Vec::new();
61
+ for i in session.inputs.iter() {
62
+ /* let shape: Vec<i32> = i
63
+ .dimensions()
64
+ .map(|x| if let Some(x) = x { x as i32 } else { -1i32 })
65
+ .collect();
66
+ shapes.push(shape); */
67
+ if let ort::ValueType::Tensor { ty, dimensions } = &i.input_type {
68
+ dtypes.push(ty.clone());
69
+ let shape = dimensions.clone();
70
+ shapes.push(shape);
71
+ } else {
72
+ panic!("不支持的数据格式, {} - {}", file!(), line!());
73
+ }
74
+ //dtypes.push(i.input_type);
75
+ names.push(i.name.clone());
76
+ }
77
+ Self {
78
+ shapes,
79
+ dtypes,
80
+ names,
81
+ ..Default::default()
82
+ }
83
+ }
84
+ }
85
+
86
+ #[derive(Debug)]
87
+ pub struct OrtConfig {
88
+ // ORT config
89
+ pub f: String,
90
+ pub task: Option<YOLOTask>,
91
+ pub ep: OrtEP,
92
+ pub trt_fp16: bool,
93
+ pub batch: Batch,
94
+ pub image_size: (Option<u32>, Option<u32>),
95
+ }
96
+
97
+ #[derive(Debug)]
98
+ pub struct OrtBackend {
99
+ // ORT engine
100
+ session: Session,
101
+ task: YOLOTask,
102
+ ep: OrtEP,
103
+ batch: Batch,
104
+ inputs: OrtInputs,
105
+ }
106
+
107
+ impl OrtBackend {
108
+ pub fn build(args: OrtConfig) -> Result<Self> {
109
+ // build env & session
110
+ // in version 2.x environment is removed
111
+ /* let env = ort::EnvironmentBuilder
112
+ ::with_name("YOLOv8")
113
+ .build()?
114
+ .into_arc(); */
115
+ let sessionbuilder = SessionBuilder::new()?;
116
+ let session = sessionbuilder.commit_from_file(&args.f)?;
117
+ //let session = SessionBuilder::new(&env)?.with_model_from_file(&args.f)?;
118
+
119
+ // get inputs
120
+ let mut inputs = OrtInputs::new(&session);
121
+
122
+ // batch size
123
+ let mut batch = args.batch;
124
+ let batch = if inputs.shapes[0][0] == -1 {
125
+ batch
126
+ } else {
127
+ assert_eq!(
128
+ inputs.shapes[0][0] as u32, batch.opt,
129
+ "Expected batch size: {}, got {}. Try using `--batch {}`.",
130
+ inputs.shapes[0][0] as u32, batch.opt, inputs.shapes[0][0] as u32
131
+ );
132
+ batch.opt = inputs.shapes[0][0] as u32;
133
+ batch
134
+ };
135
+
136
+ // input size: height and width
137
+ let height = if inputs.shapes[0][2] == -1 {
138
+ match args.image_size.0 {
139
+ Some(height) => height,
140
+ None => panic!("Failed to get model height. Make it explicit with `--height`"),
141
+ }
142
+ } else {
143
+ inputs.shapes[0][2] as u32
144
+ };
145
+ let width = if inputs.shapes[0][3] == -1 {
146
+ match args.image_size.1 {
147
+ Some(width) => width,
148
+ None => panic!("Failed to get model width. Make it explicit with `--width`"),
149
+ }
150
+ } else {
151
+ inputs.shapes[0][3] as u32
152
+ };
153
+ inputs.sizes.push(vec![height, width]);
154
+
155
+ // build provider
156
+ let (ep, provider) = match args.ep {
157
+ OrtEP::CUDA(device_id) => Self::set_ep_cuda(device_id),
158
+ OrtEP::Trt(device_id) => Self::set_ep_trt(device_id, args.trt_fp16, &batch, &inputs),
159
+ _ => (
160
+ OrtEP::CPU,
161
+ ExecutionProviderDispatch::from(CPUExecutionProvider::default()),
162
+ ),
163
+ };
164
+
165
+ // build session again with the new provider
166
+ let session = SessionBuilder::new()?
167
+ // .with_optimization_level(ort::GraphOptimizationLevel::Level3)?
168
+ .with_execution_providers([provider])?
169
+ .commit_from_file(args.f)?;
170
+
171
+ // task: using given one or guessing
172
+ let task = match args.task {
173
+ Some(task) => task,
174
+ None => match session.metadata() {
175
+ Err(_) => panic!("No metadata found. Try making it explicit by `--task`"),
176
+ Ok(metadata) => match metadata.custom("task") {
177
+ Err(_) => panic!("Can not get custom value. Try making it explicit by `--task`"),
178
+ Ok(value) => match value {
179
+ None => panic!("No corresponding value of `task` found in metadata. Make it explicit by `--task`"),
180
+ Some(task) => match task.as_str() {
181
+ "classify" => YOLOTask::Classify,
182
+ "detect" => YOLOTask::Detect,
183
+ "pose" => YOLOTask::Pose,
184
+ "segment" => YOLOTask::Segment,
185
+ x => todo!("{:?} is not supported for now!", x),
186
+ },
187
+ },
188
+ },
189
+ },
190
+ };
191
+
192
+ Ok(Self {
193
+ session,
194
+ task,
195
+ ep,
196
+ batch,
197
+ inputs,
198
+ })
199
+ }
200
+
201
+ pub fn fetch_inputs_from_session(
202
+ session: &Session,
203
+ ) -> (Vec<Vec<i64>>, Vec<TensorElementType>, Vec<String>) {
204
+ // get inputs attrs from ONNX model
205
+ let mut shapes = Vec::new();
206
+ let mut dtypes = Vec::new();
207
+ let mut names = Vec::new();
208
+ for i in session.inputs.iter() {
209
+ if let ort::ValueType::Tensor { ty, dimensions } = &i.input_type {
210
+ dtypes.push(ty.clone());
211
+ let shape = dimensions.clone();
212
+ shapes.push(shape);
213
+ } else {
214
+ panic!("不支持的数据格式, {} - {}", file!(), line!());
215
+ }
216
+ names.push(i.name.clone());
217
+ }
218
+ (shapes, dtypes, names)
219
+ }
220
+
221
+ pub fn set_ep_cuda(device_id: i32) -> (OrtEP, ExecutionProviderDispatch) {
222
+ let cuda_provider = CUDAExecutionProvider::default().with_device_id(device_id);
223
+ if let Ok(true) = cuda_provider.is_available() {
224
+ (
225
+ OrtEP::CUDA(device_id),
226
+ ExecutionProviderDispatch::from(cuda_provider), //PlantForm::CUDA(cuda_provider)
227
+ )
228
+ } else {
229
+ println!("> CUDA is not available! Using CPU.");
230
+ (
231
+ OrtEP::CPU,
232
+ ExecutionProviderDispatch::from(CPUExecutionProvider::default()), //PlantForm::CPU(CPUExecutionProvider::default())
233
+ )
234
+ }
235
+ }
236
+
237
+ pub fn set_ep_trt(
238
+ device_id: i32,
239
+ fp16: bool,
240
+ batch: &Batch,
241
+ inputs: &OrtInputs,
242
+ ) -> (OrtEP, ExecutionProviderDispatch) {
243
+ // set TensorRT
244
+ let trt_provider = TensorRTExecutionProvider::default().with_device_id(device_id);
245
+
246
+ //trt_provider.
247
+ if let Ok(true) = trt_provider.is_available() {
248
+ let (height, width) = (inputs.sizes[0][0], inputs.sizes[0][1]);
249
+ if inputs.dtypes[0] == TensorElementType::Float16 && !fp16 {
250
+ panic!(
251
+ "Dtype mismatch! Expected: Float32, got: {:?}. You should use `--fp16`",
252
+ inputs.dtypes[0]
253
+ );
254
+ }
255
+ // dynamic shape: input_tensor_1:dim_1xdim_2x...,input_tensor_2:dim_3xdim_4x...,...
256
+ let mut opt_string = String::new();
257
+ let mut min_string = String::new();
258
+ let mut max_string = String::new();
259
+ for name in inputs.names.iter() {
260
+ let s_opt = format!("{}:{}x3x{}x{},", name, batch.opt, height, width);
261
+ let s_min = format!("{}:{}x3x{}x{},", name, batch.min, height, width);
262
+ let s_max = format!("{}:{}x3x{}x{},", name, batch.max, height, width);
263
+ opt_string.push_str(s_opt.as_str());
264
+ min_string.push_str(s_min.as_str());
265
+ max_string.push_str(s_max.as_str());
266
+ }
267
+ let _ = opt_string.pop();
268
+ let _ = min_string.pop();
269
+ let _ = max_string.pop();
270
+
271
+ let trt_provider = trt_provider
272
+ .with_profile_opt_shapes(opt_string)
273
+ .with_profile_min_shapes(min_string)
274
+ .with_profile_max_shapes(max_string)
275
+ .with_fp16(fp16)
276
+ .with_timing_cache(true);
277
+ (
278
+ OrtEP::Trt(device_id),
279
+ ExecutionProviderDispatch::from(trt_provider),
280
+ )
281
+ } else {
282
+ println!("> TensorRT is not available! Try using CUDA...");
283
+ Self::set_ep_cuda(device_id)
284
+ }
285
+ }
286
+
287
+ pub fn fetch_from_metadata(&self, key: &str) -> Option<String> {
288
+ // fetch value from onnx model file by key
289
+ match self.session.metadata() {
290
+ Err(_) => None,
291
+ Ok(metadata) => match metadata.custom(key) {
292
+ Err(_) => None,
293
+ Ok(value) => value,
294
+ },
295
+ }
296
+ }
297
+
298
+ pub fn run(&self, xs: Array<f32, IxDyn>, profile: bool) -> Result<Vec<Array<f32, IxDyn>>> {
299
+ // ORT inference
300
+ match self.dtype() {
301
+ TensorElementType::Float16 => self.run_fp16(xs, profile),
302
+ TensorElementType::Float32 => self.run_fp32(xs, profile),
303
+ _ => todo!(),
304
+ }
305
+ }
306
+
307
+ pub fn run_fp16(&self, xs: Array<f32, IxDyn>, profile: bool) -> Result<Vec<Array<f32, IxDyn>>> {
308
+ // f32->f16
309
+ let t = std::time::Instant::now();
310
+ let xs = xs.mapv(f16::from_f32);
311
+ if profile {
312
+ println!("[ORT f32->f16]: {:?}", t.elapsed());
313
+ }
314
+
315
+ // h2d
316
+ let t = std::time::Instant::now();
317
+ let xs = CowArray::from(xs);
318
+ if profile {
319
+ println!("[ORT H2D]: {:?}", t.elapsed());
320
+ }
321
+
322
+ // run
323
+ let t = std::time::Instant::now();
324
+ let ys = self.session.run(ort::inputs![xs.view()]?)?;
325
+ if profile {
326
+ println!("[ORT Inference]: {:?}", t.elapsed());
327
+ }
328
+
329
+ // d2h
330
+ Ok(ys
331
+ .iter()
332
+ .map(|(_k, v)| {
333
+ // d2h
334
+ let t = std::time::Instant::now();
335
+ let v = v.try_extract_tensor().unwrap();
336
+ //let v = v.try_extract::<_>().unwrap().view().clone().into_owned();
337
+ if profile {
338
+ println!("[ORT D2H]: {:?}", t.elapsed());
339
+ }
340
+
341
+ // f16->f32
342
+ let t_ = std::time::Instant::now();
343
+ let v = v.mapv(f16::to_f32);
344
+ if profile {
345
+ println!("[ORT f16->f32]: {:?}", t_.elapsed());
346
+ }
347
+ v
348
+ })
349
+ .collect::<Vec<Array<_, _>>>())
350
+ }
351
+
352
+ pub fn run_fp32(&self, xs: Array<f32, IxDyn>, profile: bool) -> Result<Vec<Array<f32, IxDyn>>> {
353
+ // h2d
354
+ let t = std::time::Instant::now();
355
+ let xs = CowArray::from(xs);
356
+ if profile {
357
+ println!("[ORT H2D]: {:?}", t.elapsed());
358
+ }
359
+
360
+ // run
361
+ let t = std::time::Instant::now();
362
+ let ys = self.session.run(ort::inputs![xs.view()]?)?;
363
+ if profile {
364
+ println!("[ORT Inference]: {:?}", t.elapsed());
365
+ }
366
+
367
+ // d2h
368
+ Ok(ys
369
+ .iter()
370
+ .map(|(_k, v)| {
371
+ let t = std::time::Instant::now();
372
+ let v = v.try_extract_tensor::<f32>().unwrap().into_owned();
373
+ //let x = x.try_extract::<_>().unwrap().view().clone().into_owned();
374
+ if profile {
375
+ println!("[ORT D2H]: {:?}", t.elapsed());
376
+ }
377
+ v
378
+ })
379
+ .collect::<Vec<Array<_, _>>>())
380
+ }
381
+
382
+ pub fn output_shapes(&self) -> Vec<Vec<i64>> {
383
+ let mut shapes = Vec::new();
384
+ for output in &self.session.outputs {
385
+ if let ValueType::Tensor { ty: _, dimensions } = &output.output_type {
386
+ let shape = dimensions.clone();
387
+ shapes.push(shape);
388
+ } else {
389
+ panic!("not support data format, {} - {}", file!(), line!());
390
+ }
391
+ }
392
+ shapes
393
+ }
394
+
395
+ pub fn output_dtypes(&self) -> Vec<TensorElementType> {
396
+ let mut dtypes = Vec::new();
397
+ for output in &self.session.outputs {
398
+ if let ValueType::Tensor { ty, dimensions: _ } = &output.output_type {
399
+ dtypes.push(ty.clone());
400
+ } else {
401
+ panic!("not support data format, {} - {}", file!(), line!());
402
+ }
403
+ }
404
+ dtypes
405
+ }
406
+
407
+ pub fn input_shapes(&self) -> &Vec<Vec<i64>> {
408
+ &self.inputs.shapes
409
+ }
410
+
411
+ pub fn input_names(&self) -> &Vec<String> {
412
+ &self.inputs.names
413
+ }
414
+
415
+ pub fn input_dtypes(&self) -> &Vec<TensorElementType> {
416
+ &self.inputs.dtypes
417
+ }
418
+
419
+ pub fn dtype(&self) -> TensorElementType {
420
+ self.input_dtypes()[0]
421
+ }
422
+
423
+ pub fn height(&self) -> u32 {
424
+ self.inputs.sizes[0][0]
425
+ }
426
+
427
+ pub fn width(&self) -> u32 {
428
+ self.inputs.sizes[0][1]
429
+ }
430
+
431
+ pub fn is_height_dynamic(&self) -> bool {
432
+ self.input_shapes()[0][2] == -1
433
+ }
434
+
435
+ pub fn is_width_dynamic(&self) -> bool {
436
+ self.input_shapes()[0][3] == -1
437
+ }
438
+
439
+ pub fn batch(&self) -> u32 {
440
+ self.batch.opt
441
+ }
442
+
443
+ pub fn is_batch_dynamic(&self) -> bool {
444
+ self.input_shapes()[0][0] == -1
445
+ }
446
+
447
+ pub fn ep(&self) -> &OrtEP {
448
+ &self.ep
449
+ }
450
+
451
+ pub fn task(&self) -> YOLOTask {
452
+ self.task.clone()
453
+ }
454
+
455
+ pub fn names(&self) -> Option<Vec<String>> {
456
+ // class names, metadata parsing
457
+ // String format: `{0: 'person', 1: 'bicycle', 2: 'sports ball', ..., 27: "yellow_lady's_slipper"}`
458
+ match self.fetch_from_metadata("names") {
459
+ Some(names) => {
460
+ let re = Regex::new(r#"(['"])([-()\w '"]+)(['"])"#).unwrap();
461
+ let mut names_ = vec![];
462
+ for (_, [_, name, _]) in re.captures_iter(&names).map(|x| x.extract()) {
463
+ names_.push(name.to_string());
464
+ }
465
+ Some(names_)
466
+ }
467
+ None => None,
468
+ }
469
+ }
470
+
471
+ pub fn nk(&self) -> Option<u32> {
472
+ // num_keypoints, metadata parsing: String `nk` in onnx model: `[17, 3]`
473
+ match self.fetch_from_metadata("kpt_shape") {
474
+ None => None,
475
+ Some(kpt_string) => {
476
+ let re = Regex::new(r"([0-9]+), ([0-9]+)").unwrap();
477
+ let caps = re.captures(&kpt_string).unwrap();
478
+ Some(caps.get(1).unwrap().as_str().parse::<u32>().unwrap())
479
+ }
480
+ }
481
+ }
482
+
483
+ pub fn nc(&self) -> Option<u32> {
484
+ // num_classes
485
+ match self.names() {
486
+ // by names
487
+ Some(names) => Some(names.len() as u32),
488
+ None => match self.task() {
489
+ // by task calculation
490
+ YOLOTask::Classify => Some(self.output_shapes()[0][1] as u32),
491
+ YOLOTask::Detect => {
492
+ if self.output_shapes()[0][1] == -1 {
493
+ None
494
+ } else {
495
+ // cxywhclss
496
+ Some(self.output_shapes()[0][1] as u32 - 4)
497
+ }
498
+ }
499
+ YOLOTask::Pose => {
500
+ match self.nk() {
501
+ None => None,
502
+ Some(nk) => {
503
+ if self.output_shapes()[0][1] == -1 {
504
+ None
505
+ } else {
506
+ // cxywhclss3*kpt
507
+ Some(self.output_shapes()[0][1] as u32 - 4 - 3 * nk)
508
+ }
509
+ }
510
+ }
511
+ }
512
+ YOLOTask::Segment => {
513
+ if self.output_shapes()[0][1] == -1 {
514
+ None
515
+ } else {
516
+ // cxywhclssnm
517
+ Some((self.output_shapes()[0][1] - self.output_shapes()[1][1]) as u32 - 4)
518
+ }
519
+ }
520
+ },
521
+ }
522
+ }
523
+
524
+ pub fn nm(&self) -> Option<u32> {
525
+ // num_masks
526
+ match self.task() {
527
+ YOLOTask::Segment => Some(self.output_shapes()[1][1] as u32),
528
+ _ => None,
529
+ }
530
+ }
531
+
532
+ pub fn na(&self) -> Option<u32> {
533
+ // num_anchors
534
+ match self.task() {
535
+ YOLOTask::Segment | YOLOTask::Detect | YOLOTask::Pose => {
536
+ if self.output_shapes()[0][2] == -1 {
537
+ None
538
+ } else {
539
+ Some(self.output_shapes()[0][2] as u32)
540
+ }
541
+ }
542
+ _ => None,
543
+ }
544
+ }
545
+
546
+ pub fn author(&self) -> Option<String> {
547
+ self.fetch_from_metadata("author")
548
+ }
549
+
550
+ pub fn version(&self) -> Option<String> {
551
+ self.fetch_from_metadata("version")
552
+ }
553
+ }
yolov12/examples/YOLOv8-ONNXRuntime-Rust/src/yolo_result.rs ADDED
@@ -0,0 +1,235 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ use ndarray::{Array, Axis, IxDyn};
2
+
3
+ #[derive(Clone, PartialEq, Default)]
4
+ pub struct YOLOResult {
5
+ // YOLO tasks results of an image
6
+ pub probs: Option<Embedding>,
7
+ pub bboxes: Option<Vec<Bbox>>,
8
+ pub keypoints: Option<Vec<Vec<Point2>>>,
9
+ pub masks: Option<Vec<Vec<u8>>>,
10
+ }
11
+
12
+ impl std::fmt::Debug for YOLOResult {
13
+ fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
14
+ f.debug_struct("YOLOResult")
15
+ .field(
16
+ "Probs(top5)",
17
+ &format_args!("{:?}", self.probs().map(|probs| probs.topk(5))),
18
+ )
19
+ .field("Bboxes", &self.bboxes)
20
+ .field("Keypoints", &self.keypoints)
21
+ .field(
22
+ "Masks",
23
+ &format_args!("{:?}", self.masks().map(|masks| masks.len())),
24
+ )
25
+ .finish()
26
+ }
27
+ }
28
+
29
+ impl YOLOResult {
30
+ pub fn new(
31
+ probs: Option<Embedding>,
32
+ bboxes: Option<Vec<Bbox>>,
33
+ keypoints: Option<Vec<Vec<Point2>>>,
34
+ masks: Option<Vec<Vec<u8>>>,
35
+ ) -> Self {
36
+ Self {
37
+ probs,
38
+ bboxes,
39
+ keypoints,
40
+ masks,
41
+ }
42
+ }
43
+
44
+ pub fn probs(&self) -> Option<&Embedding> {
45
+ self.probs.as_ref()
46
+ }
47
+
48
+ pub fn keypoints(&self) -> Option<&Vec<Vec<Point2>>> {
49
+ self.keypoints.as_ref()
50
+ }
51
+
52
+ pub fn masks(&self) -> Option<&Vec<Vec<u8>>> {
53
+ self.masks.as_ref()
54
+ }
55
+
56
+ pub fn bboxes(&self) -> Option<&Vec<Bbox>> {
57
+ self.bboxes.as_ref()
58
+ }
59
+
60
+ pub fn bboxes_mut(&mut self) -> Option<&mut Vec<Bbox>> {
61
+ self.bboxes.as_mut()
62
+ }
63
+ }
64
+
65
+ #[derive(Debug, PartialEq, Clone, Default)]
66
+ pub struct Point2 {
67
+ // A point2d with x, y, conf
68
+ x: f32,
69
+ y: f32,
70
+ confidence: f32,
71
+ }
72
+
73
+ impl Point2 {
74
+ pub fn new_with_conf(x: f32, y: f32, confidence: f32) -> Self {
75
+ Self { x, y, confidence }
76
+ }
77
+
78
+ pub fn new(x: f32, y: f32) -> Self {
79
+ Self {
80
+ x,
81
+ y,
82
+ ..Default::default()
83
+ }
84
+ }
85
+
86
+ pub fn x(&self) -> f32 {
87
+ self.x
88
+ }
89
+
90
+ pub fn y(&self) -> f32 {
91
+ self.y
92
+ }
93
+
94
+ pub fn confidence(&self) -> f32 {
95
+ self.confidence
96
+ }
97
+ }
98
+
99
+ #[derive(Debug, Clone, PartialEq, Default)]
100
+ pub struct Embedding {
101
+ // An float32 n-dims tensor
102
+ data: Array<f32, IxDyn>,
103
+ }
104
+
105
+ impl Embedding {
106
+ pub fn new(data: Array<f32, IxDyn>) -> Self {
107
+ Self { data }
108
+ }
109
+
110
+ pub fn data(&self) -> &Array<f32, IxDyn> {
111
+ &self.data
112
+ }
113
+
114
+ pub fn topk(&self, k: usize) -> Vec<(usize, f32)> {
115
+ let mut probs = self
116
+ .data
117
+ .iter()
118
+ .enumerate()
119
+ .map(|(a, b)| (a, *b))
120
+ .collect::<Vec<_>>();
121
+ probs.sort_by(|a, b| b.1.partial_cmp(&a.1).unwrap());
122
+ let mut topk = Vec::new();
123
+ for &(id, confidence) in probs.iter().take(k) {
124
+ topk.push((id, confidence));
125
+ }
126
+ topk
127
+ }
128
+
129
+ pub fn norm(&self) -> Array<f32, IxDyn> {
130
+ let std_ = self.data.mapv(|x| x * x).sum_axis(Axis(0)).mapv(f32::sqrt);
131
+ self.data.clone() / std_
132
+ }
133
+
134
+ pub fn top1(&self) -> (usize, f32) {
135
+ self.topk(1)[0]
136
+ }
137
+ }
138
+
139
+ #[derive(Debug, Clone, PartialEq, Default)]
140
+ pub struct Bbox {
141
+ // a bounding box around an object
142
+ xmin: f32,
143
+ ymin: f32,
144
+ width: f32,
145
+ height: f32,
146
+ id: usize,
147
+ confidence: f32,
148
+ }
149
+
150
+ impl Bbox {
151
+ pub fn new_from_xywh(xmin: f32, ymin: f32, width: f32, height: f32) -> Self {
152
+ Self {
153
+ xmin,
154
+ ymin,
155
+ width,
156
+ height,
157
+ ..Default::default()
158
+ }
159
+ }
160
+
161
+ pub fn new(xmin: f32, ymin: f32, width: f32, height: f32, id: usize, confidence: f32) -> Self {
162
+ Self {
163
+ xmin,
164
+ ymin,
165
+ width,
166
+ height,
167
+ id,
168
+ confidence,
169
+ }
170
+ }
171
+
172
+ pub fn width(&self) -> f32 {
173
+ self.width
174
+ }
175
+
176
+ pub fn height(&self) -> f32 {
177
+ self.height
178
+ }
179
+
180
+ pub fn xmin(&self) -> f32 {
181
+ self.xmin
182
+ }
183
+
184
+ pub fn ymin(&self) -> f32 {
185
+ self.ymin
186
+ }
187
+
188
+ pub fn xmax(&self) -> f32 {
189
+ self.xmin + self.width
190
+ }
191
+
192
+ pub fn ymax(&self) -> f32 {
193
+ self.ymin + self.height
194
+ }
195
+
196
+ pub fn tl(&self) -> Point2 {
197
+ Point2::new(self.xmin, self.ymin)
198
+ }
199
+
200
+ pub fn br(&self) -> Point2 {
201
+ Point2::new(self.xmax(), self.ymax())
202
+ }
203
+
204
+ pub fn cxcy(&self) -> Point2 {
205
+ Point2::new(self.xmin + self.width / 2., self.ymin + self.height / 2.)
206
+ }
207
+
208
+ pub fn id(&self) -> usize {
209
+ self.id
210
+ }
211
+
212
+ pub fn confidence(&self) -> f32 {
213
+ self.confidence
214
+ }
215
+
216
+ pub fn area(&self) -> f32 {
217
+ self.width * self.height
218
+ }
219
+
220
+ pub fn intersection_area(&self, another: &Bbox) -> f32 {
221
+ let l = self.xmin.max(another.xmin);
222
+ let r = (self.xmin + self.width).min(another.xmin + another.width);
223
+ let t = self.ymin.max(another.ymin);
224
+ let b = (self.ymin + self.height).min(another.ymin + another.height);
225
+ (r - l + 1.).max(0.) * (b - t + 1.).max(0.)
226
+ }
227
+
228
+ pub fn union(&self, another: &Bbox) -> f32 {
229
+ self.area() + another.area() - self.intersection_area(another)
230
+ }
231
+
232
+ pub fn iou(&self, another: &Bbox) -> f32 {
233
+ self.intersection_area(another) / self.union(another)
234
+ }
235
+ }
yolov12/examples/YOLOv8-ONNXRuntime/README.md ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv8 - ONNX Runtime
2
+
3
+ This project implements YOLOv8 using ONNX Runtime.
4
+
5
+ ## Installation
6
+
7
+ To run this project, you need to install the required dependencies. The following instructions will guide you through the installation process.
8
+
9
+ ### Installing Required Dependencies
10
+
11
+ You can install the required dependencies by running the following command:
12
+
13
+ ```bash
14
+ pip install -r requirements.txt
15
+ ```
16
+
17
+ ### Installing `onnxruntime-gpu`
18
+
19
+ If you have an NVIDIA GPU and want to leverage GPU acceleration, you can install the onnxruntime-gpu package using the following command:
20
+
21
+ ```bash
22
+ pip install onnxruntime-gpu
23
+ ```
24
+
25
+ Note: Make sure you have the appropriate GPU drivers installed on your system.
26
+
27
+ ### Installing `onnxruntime` (CPU version)
28
+
29
+ If you don't have an NVIDIA GPU or prefer to use the CPU version of onnxruntime, you can install the onnxruntime package using the following command:
30
+
31
+ ```bash
32
+ pip install onnxruntime
33
+ ```
34
+
35
+ ### Usage
36
+
37
+ After successfully installing the required packages, you can run the YOLOv8 implementation using the following command:
38
+
39
+ ```bash
40
+ python main.py --model yolov8n.onnx --img image.jpg --conf-thres 0.5 --iou-thres 0.5
41
+ ```
42
+
43
+ Make sure to replace yolov8n.onnx with the path to your YOLOv8 ONNX model file, image.jpg with the path to your input image, and adjust the confidence threshold (conf-thres) and IoU threshold (iou-thres) values as needed.
yolov12/examples/YOLOv8-ONNXRuntime/main.py ADDED
@@ -0,0 +1,229 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
+
3
+ import argparse
4
+
5
+ import cv2
6
+ import numpy as np
7
+ import onnxruntime as ort
8
+ import torch
9
+
10
+ from ultralytics.utils import ASSETS, yaml_load
11
+ from ultralytics.utils.checks import check_requirements, check_yaml
12
+
13
+
14
+ class YOLOv8:
15
+ """YOLOv8 object detection model class for handling inference and visualization."""
16
+
17
+ def __init__(self, onnx_model, input_image, confidence_thres, iou_thres):
18
+ """
19
+ Initializes an instance of the YOLOv8 class.
20
+
21
+ Args:
22
+ onnx_model: Path to the ONNX model.
23
+ input_image: Path to the input image.
24
+ confidence_thres: Confidence threshold for filtering detections.
25
+ iou_thres: IoU (Intersection over Union) threshold for non-maximum suppression.
26
+ """
27
+ self.onnx_model = onnx_model
28
+ self.input_image = input_image
29
+ self.confidence_thres = confidence_thres
30
+ self.iou_thres = iou_thres
31
+
32
+ # Load the class names from the COCO dataset
33
+ self.classes = yaml_load(check_yaml("coco8.yaml"))["names"]
34
+
35
+ # Generate a color palette for the classes
36
+ self.color_palette = np.random.uniform(0, 255, size=(len(self.classes), 3))
37
+
38
+ def draw_detections(self, img, box, score, class_id):
39
+ """
40
+ Draws bounding boxes and labels on the input image based on the detected objects.
41
+
42
+ Args:
43
+ img: The input image to draw detections on.
44
+ box: Detected bounding box.
45
+ score: Corresponding detection score.
46
+ class_id: Class ID for the detected object.
47
+
48
+ Returns:
49
+ None
50
+ """
51
+ # Extract the coordinates of the bounding box
52
+ x1, y1, w, h = box
53
+
54
+ # Retrieve the color for the class ID
55
+ color = self.color_palette[class_id]
56
+
57
+ # Draw the bounding box on the image
58
+ cv2.rectangle(img, (int(x1), int(y1)), (int(x1 + w), int(y1 + h)), color, 2)
59
+
60
+ # Create the label text with class name and score
61
+ label = f"{self.classes[class_id]}: {score:.2f}"
62
+
63
+ # Calculate the dimensions of the label text
64
+ (label_width, label_height), _ = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1)
65
+
66
+ # Calculate the position of the label text
67
+ label_x = x1
68
+ label_y = y1 - 10 if y1 - 10 > label_height else y1 + 10
69
+
70
+ # Draw a filled rectangle as the background for the label text
71
+ cv2.rectangle(
72
+ img, (label_x, label_y - label_height), (label_x + label_width, label_y + label_height), color, cv2.FILLED
73
+ )
74
+
75
+ # Draw the label text on the image
76
+ cv2.putText(img, label, (label_x, label_y), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0), 1, cv2.LINE_AA)
77
+
78
+ def preprocess(self):
79
+ """
80
+ Preprocesses the input image before performing inference.
81
+
82
+ Returns:
83
+ image_data: Preprocessed image data ready for inference.
84
+ """
85
+ # Read the input image using OpenCV
86
+ self.img = cv2.imread(self.input_image)
87
+
88
+ # Get the height and width of the input image
89
+ self.img_height, self.img_width = self.img.shape[:2]
90
+
91
+ # Convert the image color space from BGR to RGB
92
+ img = cv2.cvtColor(self.img, cv2.COLOR_BGR2RGB)
93
+
94
+ # Resize the image to match the input shape
95
+ img = cv2.resize(img, (self.input_width, self.input_height))
96
+
97
+ # Normalize the image data by dividing it by 255.0
98
+ image_data = np.array(img) / 255.0
99
+
100
+ # Transpose the image to have the channel dimension as the first dimension
101
+ image_data = np.transpose(image_data, (2, 0, 1)) # Channel first
102
+
103
+ # Expand the dimensions of the image data to match the expected input shape
104
+ image_data = np.expand_dims(image_data, axis=0).astype(np.float32)
105
+
106
+ # Return the preprocessed image data
107
+ return image_data
108
+
109
+ def postprocess(self, input_image, output):
110
+ """
111
+ Performs post-processing on the model's output to extract bounding boxes, scores, and class IDs.
112
+
113
+ Args:
114
+ input_image (numpy.ndarray): The input image.
115
+ output (numpy.ndarray): The output of the model.
116
+
117
+ Returns:
118
+ numpy.ndarray: The input image with detections drawn on it.
119
+ """
120
+ # Transpose and squeeze the output to match the expected shape
121
+ outputs = np.transpose(np.squeeze(output[0]))
122
+
123
+ # Get the number of rows in the outputs array
124
+ rows = outputs.shape[0]
125
+
126
+ # Lists to store the bounding boxes, scores, and class IDs of the detections
127
+ boxes = []
128
+ scores = []
129
+ class_ids = []
130
+
131
+ # Calculate the scaling factors for the bounding box coordinates
132
+ x_factor = self.img_width / self.input_width
133
+ y_factor = self.img_height / self.input_height
134
+
135
+ # Iterate over each row in the outputs array
136
+ for i in range(rows):
137
+ # Extract the class scores from the current row
138
+ classes_scores = outputs[i][4:]
139
+
140
+ # Find the maximum score among the class scores
141
+ max_score = np.amax(classes_scores)
142
+
143
+ # If the maximum score is above the confidence threshold
144
+ if max_score >= self.confidence_thres:
145
+ # Get the class ID with the highest score
146
+ class_id = np.argmax(classes_scores)
147
+
148
+ # Extract the bounding box coordinates from the current row
149
+ x, y, w, h = outputs[i][0], outputs[i][1], outputs[i][2], outputs[i][3]
150
+
151
+ # Calculate the scaled coordinates of the bounding box
152
+ left = int((x - w / 2) * x_factor)
153
+ top = int((y - h / 2) * y_factor)
154
+ width = int(w * x_factor)
155
+ height = int(h * y_factor)
156
+
157
+ # Add the class ID, score, and box coordinates to the respective lists
158
+ class_ids.append(class_id)
159
+ scores.append(max_score)
160
+ boxes.append([left, top, width, height])
161
+
162
+ # Apply non-maximum suppression to filter out overlapping bounding boxes
163
+ indices = cv2.dnn.NMSBoxes(boxes, scores, self.confidence_thres, self.iou_thres)
164
+
165
+ # Iterate over the selected indices after non-maximum suppression
166
+ for i in indices:
167
+ # Get the box, score, and class ID corresponding to the index
168
+ box = boxes[i]
169
+ score = scores[i]
170
+ class_id = class_ids[i]
171
+
172
+ # Draw the detection on the input image
173
+ self.draw_detections(input_image, box, score, class_id)
174
+
175
+ # Return the modified input image
176
+ return input_image
177
+
178
+ def main(self):
179
+ """
180
+ Performs inference using an ONNX model and returns the output image with drawn detections.
181
+
182
+ Returns:
183
+ output_img: The output image with drawn detections.
184
+ """
185
+ # Create an inference session using the ONNX model and specify execution providers
186
+ session = ort.InferenceSession(self.onnx_model, providers=["CUDAExecutionProvider", "CPUExecutionProvider"])
187
+
188
+ # Get the model inputs
189
+ model_inputs = session.get_inputs()
190
+
191
+ # Store the shape of the input for later use
192
+ input_shape = model_inputs[0].shape
193
+ self.input_width = input_shape[2]
194
+ self.input_height = input_shape[3]
195
+
196
+ # Preprocess the image data
197
+ img_data = self.preprocess()
198
+
199
+ # Run inference using the preprocessed image data
200
+ outputs = session.run(None, {model_inputs[0].name: img_data})
201
+
202
+ # Perform post-processing on the outputs to obtain output image.
203
+ return self.postprocess(self.img, outputs) # output image
204
+
205
+
206
+ if __name__ == "__main__":
207
+ # Create an argument parser to handle command-line arguments
208
+ parser = argparse.ArgumentParser()
209
+ parser.add_argument("--model", type=str, default="yolov8n.onnx", help="Input your ONNX model.")
210
+ parser.add_argument("--img", type=str, default=str(ASSETS / "bus.jpg"), help="Path to input image.")
211
+ parser.add_argument("--conf-thres", type=float, default=0.5, help="Confidence threshold")
212
+ parser.add_argument("--iou-thres", type=float, default=0.5, help="NMS IoU threshold")
213
+ args = parser.parse_args()
214
+
215
+ # Check the requirements and select the appropriate backend (CPU or GPU)
216
+ check_requirements("onnxruntime-gpu" if torch.cuda.is_available() else "onnxruntime")
217
+
218
+ # Create an instance of the YOLOv8 class with the specified arguments
219
+ detection = YOLOv8(args.model, args.img, args.conf_thres, args.iou_thres)
220
+
221
+ # Perform object detection and obtain the output image
222
+ output_image = detection.main()
223
+
224
+ # Display the output image in a window
225
+ cv2.namedWindow("Output", cv2.WINDOW_NORMAL)
226
+ cv2.imshow("Output", output_image)
227
+
228
+ # Wait for a key press to exit
229
+ cv2.waitKey(0)