Projecto_texto / app.py
Teddy-Project's picture
Update app.py
88f72c8 verified
raw
history blame
1.8 kB
import gradio as gr
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, TextGenerationPipeline
from diffusers import StableDiffusionPipeline
from PIL import Image
# Modelo de texto
text_model_name = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
tokenizer = AutoTokenizer.from_pretrained(text_model_name)
text_model = AutoModelForCausalLM.from_pretrained(
text_model_name,
torch_dtype=torch.float16,
device_map="auto"
)
text_pipe = TextGenerationPipeline(
model=text_model,
tokenizer=tokenizer,
max_new_tokens=200,
do_sample=True,
temperature=0.8,
top_p=0.95
)
# Modelo de imagen
image_pipe = StableDiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
torch_dtype=torch.float16
).to("cuda")
# L贸gica para decidir si es imagen o texto
def is_image_prompt(prompt):
keywords = ["dibuja", "genera una imagen", "imagen de", "p铆ntame", "crea una ilustraci贸n"]
return any(kw in prompt.lower() for kw in keywords)
# Funci贸n del bot
def bot_response(message):
if is_image_prompt(message):
image = image_pipe(message).images[0]
return "", image
else:
prompt = "Eres una asistente coqueta, creativa y dulce.\nUsuario: " + message + "\nAsistente:"
result = text_pipe(prompt)[0]['generated_text']
reply = result.split("Asistente:")[-1].strip()
return reply, None
# Interfaz
with gr.Blocks() as demo:
gr.Markdown("## Asistente inteligente de texto e im谩genes")
input_box = gr.Textbox(label="Tu mensaje", placeholder="Escribe lo que quieras...")
text_output = gr.Textbox(label="Respuesta de texto")
image_output = gr.Image(label="Imagen generada")
input_box.submit(fn=bot_response, inputs=input_box, outputs=[text_output, image_output])
demo.launch()