Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,26 +1,15 @@
|
|
1 |
import streamlit as st
|
2 |
import os
|
3 |
-
import langchain
|
4 |
-
import langchain_community
|
5 |
-
import langchain_openai
|
6 |
-
import qdrant_client
|
7 |
from langchain_community.document_loaders import PyMuPDFLoader
|
8 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
9 |
-
from langchain_openai import ChatOpenAI
|
10 |
-
from
|
11 |
from langchain.prompts import ChatPromptTemplate
|
12 |
from langchain_core.output_parsers import StrOutputParser
|
13 |
from langchain_core.runnables import RunnablePassthrough
|
14 |
from qdrant_client import QdrantClient
|
15 |
from qdrant_client.http.models import Distance, VectorParams
|
16 |
from operator import itemgetter
|
17 |
-
from langchain_community.embeddings import HuggingFaceEmbeddings
|
18 |
-
|
19 |
-
# Print version information
|
20 |
-
print(f"langchain version: {langchain.__version__}")
|
21 |
-
print(f"langchain_community version: {langchain_community.__version__}")
|
22 |
-
print(f"langchain_openai version: {langchain_openai.__version__}")
|
23 |
-
print(f"qdrant_client version: {qdrant_client.__version__}")
|
24 |
|
25 |
# Set up API keys
|
26 |
os.environ["OPENAI_API_KEY"] = st.secrets["OPENAI_API_KEY"]
|
@@ -51,14 +40,9 @@ def load_and_process_pdfs(pdf_links):
|
|
51 |
def setup_vectorstore():
|
52 |
LOCATION = ":memory:"
|
53 |
COLLECTION_NAME = "AI_Ethics_Framework"
|
54 |
-
|
55 |
-
qdrant_client = QdrantClient(location=LOCATION)
|
56 |
|
57 |
-
|
58 |
-
embeddings = HuggingFaceEmbeddings(model_name="Technocoloredgeek/midterm-finetuned-embedding")
|
59 |
-
|
60 |
-
# Get the vector size from the embeddings
|
61 |
-
VECTOR_SIZE = len(embeddings.embed_query("test"))
|
62 |
|
63 |
# Create the collection
|
64 |
qdrant_client.create_collection(
|
@@ -67,10 +51,10 @@ def setup_vectorstore():
|
|
67 |
)
|
68 |
|
69 |
# Create the vector store
|
70 |
-
qdrant_vector_store =
|
71 |
client=qdrant_client,
|
72 |
collection_name=COLLECTION_NAME,
|
73 |
-
|
74 |
)
|
75 |
|
76 |
# Load and add documents
|
|
|
1 |
import streamlit as st
|
2 |
import os
|
|
|
|
|
|
|
|
|
3 |
from langchain_community.document_loaders import PyMuPDFLoader
|
4 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
5 |
+
from langchain_openai import OpenAIEmbeddings, ChatOpenAI
|
6 |
+
from langchain_qdrant import QdrantVectorStore
|
7 |
from langchain.prompts import ChatPromptTemplate
|
8 |
from langchain_core.output_parsers import StrOutputParser
|
9 |
from langchain_core.runnables import RunnablePassthrough
|
10 |
from qdrant_client import QdrantClient
|
11 |
from qdrant_client.http.models import Distance, VectorParams
|
12 |
from operator import itemgetter
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
# Set up API keys
|
15 |
os.environ["OPENAI_API_KEY"] = st.secrets["OPENAI_API_KEY"]
|
|
|
40 |
def setup_vectorstore():
|
41 |
LOCATION = ":memory:"
|
42 |
COLLECTION_NAME = "AI_Ethics_Framework"
|
43 |
+
VECTOR_SIZE = 1536
|
|
|
44 |
|
45 |
+
qdrant_client = QdrantClient(location=LOCATION)
|
|
|
|
|
|
|
|
|
46 |
|
47 |
# Create the collection
|
48 |
qdrant_client.create_collection(
|
|
|
51 |
)
|
52 |
|
53 |
# Create the vector store
|
54 |
+
qdrant_vector_store = QdrantVectorStore(
|
55 |
client=qdrant_client,
|
56 |
collection_name=COLLECTION_NAME,
|
57 |
+
embedding=OpenAIEmbeddings()
|
58 |
)
|
59 |
|
60 |
# Load and add documents
|