Tonic commited on
Commit
3fca32f
·
1 Parent(s): afdb985

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +306 -0
app.py ADDED
@@ -0,0 +1,306 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ description = """
2
+ # 🙋🏻‍♂️欢迎来到🌟Tonic 的🦄Qwen-VL-Chat🤩Bot!🚀
3
+ # 🙋🏻‍♂️Welcome to🌟Tonic's🦄Qwen-VL-Chat🤩Bot!🚀
4
+ 该WebUI基于Qwen-VL-Chat,实现聊天机器人功能。 但我必须解决它的很多问题,也许我也能获得一些荣誉。Qwen-VL-Chat 是一种多模式输入模型。 您可以使用此空间来测试当前模型 [qwen/Qwen-VL-Chat](https://huggingface.co/qwen/Qwen-VL-Chat) 您也可以使用 🧑🏻‍🚀qwen/Qwen-VL -通过克隆这个空间来聊天🚀。 🧬🔬🔍 只需点击这里:[重复空间](https://huggingface.co/spaces/Tonic1/VLChat?duplicate=true)
5
+ 加入我们:🌟TeamTonic🌟总是在制作很酷的演示! 在 👻Discord 上加入我们活跃的构建者🛠️社区:[Discord](https://discord.gg/nXx5wbX9) 在 🤗Huggingface 上:[TeamTonic](https://huggingface.co/TeamTonic) 和 [MultiTransformer](https:/ /huggingface.co/MultiTransformer) 在 🌐Github 上:[Polytonic](https://github.com/tonic-ai) 并为 🌟 [PolyGPT](https://github.com/tonic-ai/polygpt-alpha) 做出贡献 )
6
+ This WebUI is based on Qwen-VL-Chat, implementing chatbot functionalities. Qwen-VL-Chat is a multimodal input model. You can use this Space to test out the current model [qwen/Qwen-VL-Chat](https://huggingface.co/qwen/Qwen-VL-Chat) You can also use 🧑🏻‍🚀qwen/Qwen-VL-Chat🚀 by cloning this space. 🧬🔬🔍 Simply click here: [Duplicate Space](https://huggingface.co/spaces/Tonic1/VLChat?duplicate=true)
7
+ Join us: 🌟TeamTonic🌟 is always making cool demos! Join our active builder's🛠️community on 👻Discord: [Discord](https://discord.gg/nXx5wbX9) On 🤗Huggingface: [TeamTonic](https://huggingface.co/TeamTonic) & [MultiTransformer](https://huggingface.co/MultiTransformer) On 🌐Github: [Polytonic](https://github.com/tonic-ai) & contribute to 🌟 [PolyGPT](https://github.com/tonic-ai/polygpt-alpha)
8
+ """
9
+ disclaimer = """
10
+ 注意:此演示受 Qwen-VL 原始许可证的约束。 我们强烈建议用户不要故意生成或允许他人故意生成有害内容,
11
+ 包括仇恨言论、暴力、色情、欺骗等。(注:本演示受Qwen-VL许可协议约束,强烈建议用户不要传播或允许他人传播以下内容,包括但不限于仇恨言论、暴力、色情、欺诈相关的有害信息 .)
12
+ Note: This demo is governed by the original license of Qwen-VL. We strongly advise users not to knowingly generate or allow others to knowingly generate harmful content,
13
+ including hate speech, violence, pornography, deception, etc. (Note: This demo is subject to the license agreement of Qwen-VL. We strongly advise users not to disseminate or allow others to disseminate the following content, including but not limited to hate speech, violence, pornography, and fraud-related harmful information.)
14
+ """
15
+
16
+ from modelscope import AutoModelForCausalLM, AutoTokenizer, GenerationConfig, snapshot_download
17
+ from argparse import ArgumentParser
18
+ from pathlib import Path
19
+ import shutil
20
+ import copy
21
+ import gradio as gr
22
+ import os
23
+ import re
24
+ import secrets
25
+ import tempfile
26
+
27
+ #GlobalVariables
28
+ os.environ['CUDA_VISIBLE_DEVICES'] = '0,1'
29
+ DEFAULT_CKPT_PATH = 'qwen/Qwen-VL-Chat'
30
+ REVISION = 'v1.0.4'
31
+ BOX_TAG_PATTERN = r"<box>([\s\S]*?)</box>"
32
+ PUNCTUATION = "ï¼ï¼Ÿã€‚ï¼‚ï¼ƒï¼„ï¼…ï¼†ï¼‡ï¼ˆï¼‰ï¼Šï¼‹ï¼Œï¼ï¼ï¼šï¼›ï¼œï¼ï¼žï¼ ï¼»ï¼¼ï¼½ï¼¾ï¼¿ï½€ï½›ï½œï½ï½žï½Ÿï½ ï½¢ï½£ï½¤ã€ã€ƒã€‹ã€Œã€ã€Žã€ã€ã€‘ã€”ã€•ã€–ã€—ã€˜ã€™ã€šã€›ã€œã€ã€žã€Ÿã€°ã€¾ã€¿â€“â€”â€˜â€™â€›â€œâ€â€žâ€Ÿâ€¦â€§ï¹."
33
+ uploaded_file_dir = os.environ.get("GRADIO_TEMP_DIR") or str(Path(tempfile.gettempdir()) / "gradio")
34
+ tokenizer = None
35
+ model = None
36
+
37
+ def _get_args() -> ArgumentParser:
38
+ parser = ArgumentParser()
39
+ parser.add_argument("-c", "--checkpoint-path", type=str, default=DEFAULT_CKPT_PATH,
40
+ help="Checkpoint name or path, default to %(default)r")
41
+ parser.add_argument("--revision", type=str, default=REVISION)
42
+ parser.add_argument("--cpu-only", action="store_true", help="Run demo with CPU only")
43
+
44
+ parser.add_argument("--share", action="store_true", default=False,
45
+ help="Create a publicly shareable link for the interface.")
46
+ parser.add_argument("--inbrowser", action="store_true", default=False,
47
+ help="Automatically launch the interface in a new tab on the default browser.")
48
+ parser.add_argument("--server-port", type=int, default=8000,
49
+ help="Demo server port.")
50
+ parser.add_argument("--server-name", type=str, default="127.0.0.1",
51
+ help="Demo server name.")
52
+
53
+ args = parser.parse_args()
54
+ return args
55
+
56
+ def handle_image_submission(_chatbot, task_history, file) -> tuple:
57
+ print("handle_image_submission called")
58
+ if file is None:
59
+ print("No file uploaded")
60
+ return _chatbot, task_history
61
+ print("File received:", file)
62
+ file_path = save_image(file, uploaded_file_dir)
63
+ print("File saved at:", file_path)
64
+ history_item = ((file_path,), None)
65
+ _chatbot.append(history_item)
66
+ task_history.append(history_item)
67
+ return predict(_chatbot, task_history, tokenizer, model)
68
+
69
+
70
+ def _load_model_tokenizer(args) -> tuple:
71
+ global tokenizer, model
72
+ model_id = args.checkpoint_path
73
+ model_dir = snapshot_download(model_id, revision=args.revision)
74
+ tokenizer = AutoTokenizer.from_pretrained(
75
+ model_dir, trust_remote_code=True, resume_download=True,
76
+ )
77
+
78
+ if args.cpu_only:
79
+ device_map = "cpu"
80
+ else:
81
+ device_map = "auto"
82
+
83
+ model = AutoModelForCausalLM.from_pretrained(
84
+ model_dir,
85
+ device_map=device_map,
86
+ trust_remote_code=True,
87
+ bf16=True,
88
+ resume_download=True,
89
+ ).eval()
90
+ model.generation_config = GenerationConfig.from_pretrained(
91
+ model_dir, trust_remote_code=True, resume_download=True,
92
+ )
93
+
94
+ return model, tokenizer
95
+
96
+
97
+ def _parse_text(text: str) -> str:
98
+ lines = text.split("\n")
99
+ lines = [line for line in lines if line != ""]
100
+ count = 0
101
+ for i, line in enumerate(lines):
102
+ if "```" in line:
103
+ count += 1
104
+ items = line.split("`")
105
+ if count % 2 == 1:
106
+ lines[i] = f'<pre><code class="language-{items[-1]}">'
107
+ else:
108
+ lines[i] = f"<br></code></pre>"
109
+ else:
110
+ if i > 0:
111
+ if count % 2 == 1:
112
+ line = line.replace("`", r"\`")
113
+ line = line.replace("<", "&lt;")
114
+ line = line.replace(">", "&gt;")
115
+ line = line.replace(" ", "&nbsp;")
116
+ line = line.replace("*", "&ast;")
117
+ line = line.replace("_", "&lowbar;")
118
+ line = line.replace("-", "&#45;")
119
+ line = line.replace(".", "&#46;")
120
+ line = line.replace("!", "&#33;")
121
+ line = line.replace("(", "&#40;")
122
+ line = line.replace(")", "&#41;")
123
+ line = line.replace("$", "&#36;")
124
+ lines[i] = "<br>" + line
125
+ text = "".join(lines)
126
+ return text
127
+
128
+ def save_image(image_file, upload_dir: str) -> str:
129
+ print("save_image called with:", image_file)
130
+ Path(upload_dir).mkdir(parents=True, exist_ok=True)
131
+ filename = secrets.token_hex(10) + Path(image_file.name).suffix
132
+ file_path = Path(upload_dir) / filename
133
+ print("Saving to:", file_path)
134
+ with open(image_file.name, "rb") as f_input, open(file_path, "wb") as f_output:
135
+ f_output.write(f_input.read())
136
+ return str(file_path)
137
+
138
+
139
+ def add_file(history, task_history, file):
140
+ if file is None:
141
+ return history, task_history
142
+ file_path = save_image(file)
143
+ history = history + [((file_path,), None)]
144
+ task_history = task_history + [((file_path,), None)]
145
+ return history, task_history
146
+
147
+
148
+ def predict(_chatbot, task_history) -> list:
149
+ print("predict called")
150
+ if not _chatbot:
151
+ return _chatbot
152
+ chat_query = _chatbot[-1][0]
153
+ print("Chat query:", chat_query)
154
+
155
+ if isinstance(chat_query, tuple):
156
+ query = [{'image': chat_query[0]}]
157
+ else:
158
+ query = [{'text': _parse_text(chat_query)}]
159
+
160
+ print("Query for model:", query)
161
+ inputs = tokenizer.from_list_format(query)
162
+ tokenized_inputs = tokenizer(inputs, return_tensors='pt')
163
+ tokenized_inputs = tokenized_inputs.to(model.device)
164
+
165
+ pred = model.generate(**tokenized_inputs)
166
+ response = tokenizer.decode(pred.cpu()[0], skip_special_tokens=False)
167
+ print("Model response:", response)
168
+ if 'image' in query[0]:
169
+ image = tokenizer.draw_bbox_on_latest_picture(response)
170
+ if image is not None:
171
+ image_path = save_image(image, uploaded_file_dir)
172
+ _chatbot[-1] = (chat_query, (image_path,))
173
+ else:
174
+ _chatbot[-1] = (chat_query, "No image to display.")
175
+ else:
176
+ _chatbot[-1] = (chat_query, response)
177
+ return _chatbot
178
+
179
+ def save_uploaded_image(image_file, upload_dir):
180
+ if image is None:
181
+ return None
182
+ temp_dir = secrets.token_hex(20)
183
+ temp_dir = Path(uploaded_file_dir) / temp_dir
184
+ temp_dir.mkdir(exist_ok=True, parents=True)
185
+ name = f"tmp{secrets.token_hex(5)}.jpg"
186
+ filename = temp_dir / name
187
+ image.save(str(filename))
188
+ return str(filename)
189
+
190
+ def regenerate(_chatbot, task_history) -> list:
191
+ if not task_history:
192
+ return _chatbot
193
+ item = task_history[-1]
194
+ if item[1] is None:
195
+ return _chatbot
196
+ task_history[-1] = (item[0], None)
197
+ chatbot_item = _chatbot.pop(-1)
198
+ if chatbot_item[0] is None:
199
+ _chatbot[-1] = (_chatbot[-1][0], None)
200
+ else:
201
+ _chatbot.append((chatbot_item[0], None))
202
+ return predict(_chatbot, task_history, tokenizer, model)
203
+
204
+ def add_text(history, task_history, text) -> tuple:
205
+ task_text = text
206
+ if len(text) >= 2 and text[-1] in PUNCTUATION and text[-2] not in PUNCTUATION:
207
+ task_text = text[:-1]
208
+ history = history + [(_parse_text(text), None)]
209
+ task_history = task_history + [(task_text, None)]
210
+ return history, task_history, ""
211
+
212
+ def add_file(history, task_history, file):
213
+ if file is None:
214
+ return history, task_history # Return if no file is uploaded
215
+ file_path = file.name
216
+ history = history + [((file.name,), None)]
217
+ task_history = task_history + [((file.name,), None)]
218
+ return history, task_history
219
+
220
+ def reset_user_input():
221
+ return gr.update(value="")
222
+
223
+ def process_response(response: str) -> str:
224
+ response = response.replace("<ref>", "").replace(r"</ref>", "")
225
+ response = re.sub(BOX_TAG_PATTERN, "", response)
226
+ return response
227
+
228
+ def process_history_for_model(task_history) -> list:
229
+ processed_history = []
230
+ for query, response in task_history:
231
+ if isinstance(query, tuple):
232
+ query = {'image': query[0]}
233
+ else:
234
+ query = {'text': query}
235
+ response = response or ""
236
+ processed_history.append((query, response))
237
+ return processed_history
238
+
239
+ def reset_state(task_history) -> list:
240
+ task_history.clear()
241
+ return []
242
+
243
+
244
+ def _launch_demo(args, model, tokenizer):
245
+ uploaded_file_dir = os.environ.get("GRADIO_TEMP_DIR") or str(
246
+ Path(tempfile.gettempdir()) / "gradio"
247
+ )
248
+
249
+ with gr.Blocks() as demo:
250
+ gr.Markdown(description)
251
+ with gr.Row():
252
+ with gr.Column(scale=1):
253
+ chatbot = gr.Chatbot(label='Qwen-VL-Chat')
254
+ with gr.Column(scale=1):
255
+ with gr.Row():
256
+ query = gr.Textbox(lines=2, label='Input', placeholder="Type your message here...")
257
+ submit_btn = gr.Button("🚀 Submit")
258
+ with gr.Row():
259
+ file_upload = gr.UploadButton("📁 Upload Image", file_types=["image"])
260
+ submit_file_btn = gr.Button("Submit Image")
261
+ regen_btn = gr.Button("🤔️ Regenerate")
262
+ empty_bin = gr.Button("🧹 Clear History")
263
+ task_history = gr.State([])
264
+
265
+ submit_btn.click(
266
+ fn=predict,
267
+ inputs=[chatbot, task_history],
268
+ outputs=[chatbot]
269
+ )
270
+
271
+ submit_file_btn.click(
272
+ fn=handle_image_submission,
273
+ inputs=[chatbot, task_history, file_upload],
274
+ outputs=[chatbot, task_history]
275
+ )
276
+
277
+ regen_btn.click(
278
+ fn=regenerate,
279
+ inputs=[chatbot, task_history],
280
+ outputs=[chatbot]
281
+ )
282
+
283
+ empty_bin.click(
284
+ fn=reset_state,
285
+ inputs=[task_history],
286
+ outputs=[task_history],
287
+ )
288
+
289
+ query.submit(
290
+ fn=add_text,
291
+ inputs=[chatbot, task_history, query],
292
+ outputs=[chatbot, task_history, query]
293
+ )
294
+
295
+ gr.Markdown(disclaimer)
296
+
297
+ demo.queue().launch()
298
+
299
+
300
+ def main():
301
+ args = _get_args()
302
+ model, tokenizer = _load_model_tokenizer(args)
303
+ _launch_demo(args, model, tokenizer)
304
+
305
+ if __name__ == '__main__':
306
+ main()