SagaMKM commited on
Commit
41c2f0d
·
verified ·
1 Parent(s): 937bb3c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +46 -3
app.py CHANGED
@@ -1,7 +1,50 @@
1
  import gradio as gr
 
 
2
 
3
- gr.load("models/meta-llama/Llama-3.2-1B").launch()
 
 
 
4
 
5
- from datasets import load_dataset
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6
 
7
- ds = load_dataset("gbharti/finance-alpaca")
 
 
 
1
  import gradio as gr
2
+ from transformers import AutoModelForCausalLM, AutoTokenizer
3
+ from datasets import load_dataset
4
 
5
+ # Load LLaMA model and tokenizer from Hugging Face
6
+ model_name = "meta-llama/Llama-3.2-1B"
7
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
8
+ model = AutoModelForCausalLM.from_pretrained(model_name)
9
 
10
+ # Load financial dataset to enrich responses
11
+ dataset = load_dataset("gbharti/finance-alpaca")
12
+
13
+ # Helper function to extract dataset info (optional enhancement)
14
+ def get_insight_from_dataset():
15
+ sample = dataset["train"].shuffle(seed=42).select([0])[0]
16
+ return f"Example insight: {sample['text']}"
17
+
18
+ # Function to process user input and generate financial advice
19
+ def financial_advisor(user_input):
20
+ # Tokenize the user input
21
+ inputs = tokenizer(user_input, return_tensors="pt")
22
+
23
+ # Generate response using the LLaMA model
24
+ outputs = model.generate(**inputs, max_length=256, num_return_sequences=1)
25
+ advice = tokenizer.decode(outputs[0], skip_special_tokens=True)
26
+
27
+ # Get additional insight from dataset to enrich advice (optional)
28
+ insight = get_insight_from_dataset()
29
+
30
+ # Combine the advice and the insight
31
+ full_response = f"Advice: {advice}\n\n{insight}"
32
+ return full_response
33
+
34
+ # Create Gradio Interface
35
+ interface = gr.Interface(
36
+ fn=financial_advisor,
37
+ inputs=gr.Textbox(lines=5, placeholder="Enter your financial question..."),
38
+ outputs="text",
39
+ title="AI Financial Advisor",
40
+ description="Ask me anything related to finance, investments, savings, and more.",
41
+ examples=[
42
+ "Should I invest in stocks or real estate?",
43
+ "How can I save more money on a tight budget?",
44
+ "What are some good investment options for retirement?",
45
+ ]
46
+ )
47
 
48
+ # Launch the Gradio app
49
+ if __name__ == "__main__":
50
+ interface.launch()