Spaces:
Running
Running
File size: 19,840 Bytes
2b72810 5139467 2b72810 ea678b8 2b72810 ea678b8 2b72810 ea678b8 2b72810 ea678b8 2b72810 a498893 ea678b8 2b72810 a498893 2719f89 a498893 2b72810 ea678b8 2b72810 ea678b8 2719f89 2b72810 ea678b8 2b72810 ea678b8 2b72810 ea678b8 2b72810 ea678b8 a498893 2b72810 a498893 2b72810 a498893 2b72810 2719f89 a498893 2719f89 a498893 2719f89 a498893 2719f89 a498893 2719f89 a498893 2719f89 a498893 2719f89 a498893 2719f89 ea678b8 2719f89 2b72810 2719f89 2b72810 2719f89 2b72810 2719f89 2b72810 a498893 2b72810 ea678b8 2b72810 ea678b8 2b72810 2719f89 2b72810 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 |
<!DOCTYPE html>
<html>
<head>
<title>Cancer Game Theory</title>
<script src="https://cdn.jsdelivr.net/npm/chart.js"></script>
<style>
body {
font-family: Arial, sans-serif;
margin: 20px;
background-color: #f0f8ff;
}
.header {
text-align: center;
padding: 20px;
background-color: #1e3799;
color: white;
border-radius: 10px;
margin-bottom: 20px;
}
.header h1 {
margin: 0;
font-size: 2.5em;
}
.rules {
background-color: #e8f4f8;
padding: 20px;
border-radius: 10px;
margin: 20px 0;
border: 2px solid #1e3799;
}
.rules h2 {
color: #1e3799;
margin-top: 0;
}
.rules ul {
line-height: 1.6;
list-style-type: none;
padding-left: 0;
}
canvas {
border: 2px solid #1e3799;
margin: 10px 0;
border-radius: 5px;
}
.controls {
margin: 10px 0;
padding: 15px;
border: 2px solid #1e3799;
border-radius: 5px;
background-color: white;
}
.param-group {
margin: 10px 0;
padding: 10px;
border-left: 4px solid #1e3799;
background-color: #f8f9fa;
}
.footer {
text-align: center;
margin-top: 20px;
padding: 10px;
color: #666;
font-size: 0.9em;
}
button {
background-color: #1e3799;
color: white;
border: none;
padding: 10px 20px;
border-radius: 5px;
cursor: pointer;
margin: 5px;
}
button:hover {
background-color: #0c2461;
}
.data-panel {
display: grid;
grid-template-columns: 1fr 1fr;
gap: 20px;
margin-top: 20px;
}
.generations-table {
max-height: 300px;
overflow-y: auto;
}
table {
width: 100%;
border-collapse: collapse;
}
th, td {
padding: 8px;
text-align: left;
border-bottom: 1px solid #ddd;
}
th {
background-color: #1e3799;
color: white;
}
</style>
</head>
<body>
<div class="header">
<h1>Cancer Game Theory Simulation</h1>
</div>
<div class="rules">
<h2>Simulation Rules</h2>
<ul>
<li>Cancer cells die when surrounded by 3+ cells within <span id="deathProxDisplay">25</span>px</li>
<li>Healthy cells die when near 3+ cancer cells within 25px</li>
<li>Healthy cells gain defense from neighbors and move 20% faster</li>
<li>Cancer cells become vulnerable when isolated</li>
<li>Cells reproduce with population-based adjustments</li>
<li>Neural networks control movement decisions</li>
</ul>
</div>
<div class="controls">
<h2>Simulation Parameters</h2>
<div class="param-group">
<label>Death Proximity (px): <input type="number" id="deathProximity" value="25" min="1"></label>
<label>Healthy Death Threshold: <input type="number" id="healthyDeathThreshold" value="3" min="1"></label>
<label>Healthy Death Radius: <input type="number" id="healthyDeathRadius" value="25" min="1"></label>
<label>Hidden Dimension: <input type="number" id="hiddenDim" value="6" min="1"></label>
<label>Initial Healthy: <input type="number" id="initialHealthy" value="20" min="1"></label>
<label>Initial Cancer: <input type="number" id="initialCancer" value="5" min="1"></label>
<label>Mutation Rate: <input type="number" id="mutationRate" value="0.08" step="0.01" min="0"></label>
<label>Healthy Repro Rate: <input type="number" id="healthyRepro" value="3" min="0"></label>
<label>Cancer Repro Rate: <input type="number" id="cancerRepro" value="1" min="0"></label>
</div>
<button id="start">Start</button>
<button id="reset">Reset</button>
<div id="status">
Generation: <span id="genCount">1</span> |
Healthy: <span id="healthyCount">0</span> |
Cancer: <span id="cancerCount">0</span>
</div>
<div class="data-panel">
<div class="generations-table">
<h3>Generation History (Every 10 gens)</h3>
<table id="generationTable">
<thead>
<tr>
<th>Generation</th>
<th>Healthy</th>
<th>Cancer</th>
<th>Avg Speed</th>
</tr>
</thead>
<tbody id="tableBody"></tbody>
</table>
</div>
<div>
<h3>Population Trends</h3>
<canvas id="populationChart"></canvas>
</div>
</div>
</div>
<canvas id="simCanvas" width="800" height="500"></canvas>
<div class="footer">
<p>Developed by Julian Herrera | For Biology LQHS</p>
<p>Simulation Purpose: Demonstrate evolutionary game theory in cancer biology</p>
</div>
<script>
const canvas = document.getElementById('simCanvas');
const ctx = canvas.getContext('2d');
let cells = [];
let animationId;
let generation = 1;
let frameCount = 0;
const cellRadius = 5;
let populationChart = null;
let generationsData = [];
let currentHiddenDim = 6;
const targetFPS = 60;
let lastFrame = 0;
function getNormal(mean = 0, std = 1) {
let u, v, s;
do {
u = Math.random() * 2 - 1;
v = Math.random() * 2 - 1;
s = u * u + v * v;
} while (s >= 1 || s === 0);
s = Math.sqrt(-2 * Math.log(s)/s);
return mean + std * u * s;
}
class NeuralNetwork {
constructor(parent = null) {
const inputSize = 8;
const outputSize = 2;
if(parent) {
this.weights1 = parent.weights1.map(row =>
row.map(w => w + getNormal(0, parseFloat(document.getElementById('mutationRate').value)))
);
this.weights2 = parent.weights2.map(row =>
row.map(w => w + getNormal(0, parseFloat(document.getElementById('mutationRate').value)))
);
} else {
this.weights1 = Array.from({length: inputSize}, () =>
Array.from({length: currentHiddenDim}, () => getNormal(0, 1)));
this.weights2 = Array.from({length: currentHiddenDim}, () =>
Array.from({length: outputSize}, () => getNormal(0, 1)));
}
}
activate(x) {
return x;
}
predict(inputs) {
const hidden = this.weights1[0].map((_, i) =>
this.activate(inputs.reduce((sum, val, j) => sum + val * this.weights1[j][i], 0))
);
return this.weights2[0].map((_, i) =>
this.activate(hidden.reduce((sum, val, j) => sum + val * this.weights2[j][i], 0))
);
}
}
class Cell {
constructor(type, parent = null) {
this.type = type;
this.brain = parent ? new NeuralNetwork(parent.brain) : new NeuralNetwork();
this.x = parent ?
parent.x + (Math.random() * 40 - 20) :
Math.random() * canvas.width;
this.y = parent ?
parent.y + (Math.random() * 40 - 20) :
Math.random() * canvas.height;
this.speed = 0;
this.defense = type === 'healthy' ? Math.random() * 0.3 : 0;
}
getNearbyCells() {
return cells.filter(c => c !== this)
.map(c => ({
dx: c.x - this.x,
dy: c.y - this.y,
dist: Math.hypot(c.x - this.x, c.y - this.y),
type: c.type
})).sort((a, b) => a.dist - b.dist).slice(0, 4);
}
update() {
const nearby = this.getNearbyCells();
const inputs = [];
for(let i = 0; i < 4; i++) {
inputs.push(nearby[i] ? nearby[i].dist / 800 : 0);
inputs.push(nearby[i] ? (nearby[i].type === 'healthy' ? 0 : 1) : 0);
}
const [vx, vy] = this.brain.predict(inputs);
if(this.type === 'healthy') {
this.x += vx * 1.2;
this.y += vy * 1.2;
this.speed = Math.hypot(vx, vy) * 1.2;
} else {
this.x += vx;
this.y += vy;
this.speed = Math.hypot(vx, vy);
}
this.x = (this.x + canvas.width) % canvas.width;
this.y = (this.y + canvas.height) % canvas.height;
}
draw() {
const baseColor = this.type === 'healthy' ? '#00ff00' : '#ff0000';
const defenseBoost = Math.min(this.defense * 100, 50);
ctx.fillStyle = this.type === 'healthy'
? `hsl(120, 100%, ${50 + defenseBoost}%)`
: baseColor;
ctx.beginPath();
ctx.arc(this.x, this.y, cellRadius, 0, Math.PI * 2);
ctx.fill();
}
}
function checkCollisions() {
const deathProximity = parseInt(document.getElementById('deathProximity').value);
const healthyDeathThreshold = parseInt(document.getElementById('healthyDeathThreshold').value);
const healthyDeathRadius = parseInt(document.getElementById('healthyDeathRadius').value);
const cellsCopy = [...cells];
const cellsToRemove = new Set();
const cellsToConvert = new Set();
cellsCopy.forEach((cell) => {
if(cell.type === 'healthy') {
const healthyNeighbors = cellsCopy.filter(c =>
c.type === 'healthy' &&
Math.hypot(c.x - cell.x, c.y - cell.y) < 50
);
const defenseBoost = Math.min(healthyNeighbors.length * 0.1, 0.5);
const nearbyCancer = cellsCopy.filter(c =>
c.type === 'cancer' &&
Math.hypot(c.x - cell.x, c.y - cell.y) < healthyDeathRadius
);
if(nearbyCancer.length >= healthyDeathThreshold &&
Math.random() > (cell.defense + defenseBoost)) {
cellsToRemove.add(cell);
}
}
if(cell.type === 'cancer') {
const cancerNeighbors = cellsCopy.filter(c =>
c.type === 'cancer' &&
c !== cell &&
Math.hypot(c.x - cell.x, c.y - cell.y) < 60
);
const neighbors = cellsCopy.filter(c =>
c !== cell &&
Math.hypot(c.x - cell.x, c.y - cell.y) < deathProximity
);
if((neighbors.length >= 3) || (cancerNeighbors.length === 0 && Math.random() < 0.1)) {
cellsToRemove.add(cell);
}
cellsCopy.forEach((other) => {
if(other.type === 'healthy' &&
Math.hypot(cell.x - other.x, cell.y - other.y) < cellRadius * 2 &&
!cellsToConvert.has(other)) {
const resistance = other.defense + (Math.random() * 0.2);
if(resistance < 0.7) {
cellsToConvert.add(other);
}
}
});
}
});
cells = cells.filter(cell => !cellsToRemove.has(cell));
cellsToConvert.forEach(cell => cell.type = 'cancer');
}
function reproduceCells() {
const healthyReproRate = parseInt(document.getElementById('healthyRepro').value);
const healthyCells = cells.filter(c => c.type === 'healthy');
const boost = Math.max(0, 3 - Math.floor(healthyCells.length / 5));
const healthyCandidates = [...healthyCells].sort(() => Math.random() - 0.5)
.slice(0, healthyReproRate + boost);
healthyCandidates.forEach(cell => cells.push(new Cell('healthy', cell)));
const cancerReproRate = parseInt(document.getElementById('cancerRepro').value);
const cancerCells = cells.filter(c => c.type === 'cancer');
const penalty = Math.floor(cancerCells.length / 10);
const cancerCandidates = [...cancerCells].sort(() => Math.random() - 0.5)
.slice(0, Math.max(0, cancerReproRate - penalty));
cancerCandidates.forEach(cell => cells.push(new Cell('cancer', cell)));
}
function updateStatus() {
document.getElementById('genCount').textContent = generation;
document.getElementById('healthyCount').textContent =
cells.filter(c => c.type === 'healthy').length;
document.getElementById('cancerCount').textContent =
cells.filter(c => c.type === 'cancer').length;
}
function saveGenerationData() {
if(generation % 10 === 0) {
const healthy = cells.filter(c => c.type === 'healthy').length;
const cancer = cells.filter(c => c.type === 'cancer').length;
const speeds = cells.map(c => c.speed);
const avgSpeed = speeds.reduce((a,b) => a + b, 0) / speeds.length || 0;
generationsData.push({
generation,
healthy,
cancer,
avgSpeed
});
if(generationsData.length > 20) generationsData.shift();
updateChart();
updateTable();
}
}
function updateChart() {
const ctx = document.getElementById('populationChart').getContext('2d');
if(populationChart) {
populationChart.destroy();
}
populationChart = new Chart(ctx, {
type: 'line',
data: {
labels: generationsData.map(d => d.generation),
datasets: [{
label: 'Healthy Cells',
data: generationsData.map(d => d.healthy),
borderColor: '#00ff00',
tension: 0.1
}, {
label: 'Cancer Cells',
data: generationsData.map(d => d.cancer),
borderColor: '#ff0000',
tension: 0.1
}]
},
options: {
responsive: true,
scales: {
y: {
beginAtZero: true
}
}
}
});
}
function updateTable() {
const tableBody = document.getElementById('tableBody');
tableBody.innerHTML = generationsData.map(d => `
<tr>
<td>${d.generation}</td>
<td>${d.healthy}</td>
<td>${d.cancer}</td>
<td>${d.avgSpeed.toFixed(2)}</td>
</tr>
`).join('');
}
function safeAnimate(timestamp) {
try {
const delta = timestamp - lastFrame;
if (delta >= 1000/targetFPS) {
ctx.clearRect(0, 0, canvas.width, canvas.height);
frameCount++;
if(frameCount % 60 === 0) {
generation++;
reproduceCells();
updateStatus();
saveGenerationData();
}
cells.forEach(cell => cell.update());
checkCollisions();
cells.forEach(cell => cell.draw());
lastFrame = timestamp;
}
animationId = requestAnimationFrame(safeAnimate);
} catch (error) {
console.error('Simulation error:', error);
document.getElementById('status').innerHTML += ' [PAUSED DUE TO ERROR]';
cancelAnimationFrame(animationId);
}
}
document.getElementById('start').addEventListener('click', () => {
if(!animationId) {
lastFrame = performance.now();
animationId = requestAnimationFrame(safeAnimate);
}
});
document.getElementById('reset').addEventListener('click', () => {
document.getElementById('deathProximity').value = 25;
document.getElementById('healthyDeathThreshold').value = 3;
document.getElementById('healthyDeathRadius').value = 25;
document.getElementById('hiddenDim').value = 6;
document.getElementById('initialHealthy').value = 20;
document.getElementById('initialCancer').value = 5;
document.getElementById('mutationRate').value = 0.08;
document.getElementById('healthyRepro').value = 3;
document.getElementById('cancerRepro').value = 1;
cancelAnimationFrame(animationId);
animationId = null;
generation = 1;
frameCount = 0;
cells = [];
generationsData = [];
currentHiddenDim = parseInt(document.getElementById('hiddenDim').value);
const initialHealthy = parseInt(document.getElementById('initialHealthy').value);
const initialCancer = parseInt(document.getElementById('initialCancer').value);
for(let i = 0; i < initialHealthy; i++) cells.push(new Cell('healthy'));
for(let i = 0; i < initialCancer; i++) cells.push(new Cell('cancer'));
updateStatus();
updateChart();
updateTable();
ctx.clearRect(0, 0, canvas.width, canvas.height);
cells.forEach(cell => cell.draw());
});
document.getElementById('deathProximity').addEventListener('input', function() {
document.getElementById('deathProxDisplay').textContent = this.value;
});
document.getElementById('reset').click();
</script>
</body>
</html> |