from huggingface_hub import InferenceClient import gradio as gr client = InferenceClient( "mistralai/Mistral-7B-Instruct-v0.1" ) def format_prompt(message, history): prompt = "" for user_prompt, bot_response in history: prompt += f"[INST] {user_prompt} [/INST]" prompt += f" {bot_response} " prompt += f"[INST] {message} [/INST]" return prompt def generate( prompt, history, max_tokens=2000, ): '''temperature = float(temperature) if temperature < 1e-2: temperature = 1e-2 top_p = float(top_p)''' generate_kwargs = dict( #temperature=temperature, max_tokens=max_tokens, #top_p=top_p, #repetition_penalty=repetition_penalty, #do_sample=True, #seed=42, ) formatted_prompt = format_prompt(prompt, history) stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False) output = "" for response in stream: output += response.token.text yield output return output additional_inputs=[ gr.Slider( label="Max tokens", value=2000, minimum=0, maximum=2048, step=64, interactive=True, info="The maximum numbers of new tokens", ), ] gr.ChatInterface( fn=generate, chatbot=gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel"), additional_inputs=additional_inputs, title="""Mistral 7B""" ).launch(show_api=False)