Spaces:
Running
Running
Upload 2 files
Browse files- app.py +98 -0
- requirements.txt +6 -0
app.py
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from PIL import Image
|
3 |
+
import torch
|
4 |
+
from torchvision import transforms
|
5 |
+
from transformers import AutoModelForImageSegmentation
|
6 |
+
import io
|
7 |
+
import os
|
8 |
+
|
9 |
+
# Set matmul precision (important for performance on some systems)
|
10 |
+
torch.set_float32_matmul_precision(["high", "highest"][0])
|
11 |
+
|
12 |
+
# Load the model (outside the function for efficiency)
|
13 |
+
@st.cache_resource # Cache the model to avoid reloading on every run
|
14 |
+
def load_model():
|
15 |
+
model = AutoModelForImageSegmentation.from_pretrained("ZhengPeng7/BiRefNet", trust_remote_code=True)
|
16 |
+
model.to("cuda" if torch.cuda.is_available() else "cpu") # Use CUDA if available
|
17 |
+
return model
|
18 |
+
|
19 |
+
birefnet = load_model()
|
20 |
+
|
21 |
+
# Image transformation
|
22 |
+
transform_image = transforms.Compose([
|
23 |
+
transforms.Resize((1024, 1024)),
|
24 |
+
transforms.ToTensor(),
|
25 |
+
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
|
26 |
+
])
|
27 |
+
|
28 |
+
@st.cache_data # Cache the processed images.
|
29 |
+
def process(image):
|
30 |
+
image_size = image.size
|
31 |
+
input_images = transform_image(image).unsqueeze(0).to("cuda" if torch.cuda.is_available() else "cpu")
|
32 |
+
with torch.no_grad():
|
33 |
+
preds = birefnet(input_images)[-1].sigmoid().cpu()
|
34 |
+
pred = preds[0].squeeze()
|
35 |
+
pred_pil = transforms.ToPILImage()(pred)
|
36 |
+
mask = pred_pil.resize(image_size)
|
37 |
+
image.putalpha(mask)
|
38 |
+
return image
|
39 |
+
|
40 |
+
def process_file(uploaded_file):
|
41 |
+
try:
|
42 |
+
image = Image.open(uploaded_file).convert("RGB")
|
43 |
+
transparent = process(image)
|
44 |
+
|
45 |
+
# Convert to bytes for download
|
46 |
+
img_bytes = io.BytesIO()
|
47 |
+
transparent.save(img_bytes, format="PNG")
|
48 |
+
img_bytes = img_bytes.getvalue()
|
49 |
+
|
50 |
+
return img_bytes, transparent # Return bytes for download and PIL image for display
|
51 |
+
|
52 |
+
except Exception as e:
|
53 |
+
st.error(f"An error occurred: {e}")
|
54 |
+
return None, None
|
55 |
+
|
56 |
+
|
57 |
+
st.title("Background Removal Tool")
|
58 |
+
|
59 |
+
# Tabs for different input methods
|
60 |
+
tabs = ["Image Upload", "URL Input", "File Output"]
|
61 |
+
selected_tab = st.sidebar.radio("Select Input Method", tabs)
|
62 |
+
|
63 |
+
if selected_tab == "Image Upload":
|
64 |
+
uploaded_file = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"])
|
65 |
+
if uploaded_file is not None:
|
66 |
+
image = Image.open(uploaded_file).convert("RGB")
|
67 |
+
processed_image = process(image)
|
68 |
+
st.image(processed_image, caption="Processed Image")
|
69 |
+
|
70 |
+
elif selected_tab == "URL Input":
|
71 |
+
image_url = st.text_input("Paste an image URL")
|
72 |
+
if image_url:
|
73 |
+
try:
|
74 |
+
import requests
|
75 |
+
from io import BytesIO
|
76 |
+
response = requests.get(image_url, stream=True)
|
77 |
+
response.raise_for_status() # Raise an exception for bad status codes
|
78 |
+
image = Image.open(BytesIO(response.content)).convert("RGB")
|
79 |
+
processed_image = process(image)
|
80 |
+
st.image(processed_image, caption="Processed Image from URL")
|
81 |
+
except requests.exceptions.RequestException as e:
|
82 |
+
st.error(f"Error fetching image from URL: {e}")
|
83 |
+
except Exception as e:
|
84 |
+
st.error(f"Error processing image: {e}")
|
85 |
+
|
86 |
+
|
87 |
+
elif selected_tab == "File Output":
|
88 |
+
uploaded_file = st.file_uploader("Upload an image for file output", type=["jpg", "jpeg", "png"])
|
89 |
+
if uploaded_file is not None:
|
90 |
+
file_bytes, processed_image = process_file(uploaded_file)
|
91 |
+
if file_bytes:
|
92 |
+
st.image(processed_image, caption="Processed Image") # Display the image
|
93 |
+
st.download_button(
|
94 |
+
label="Download PNG",
|
95 |
+
data=file_bytes,
|
96 |
+
file_name=f"{uploaded_file.name.rsplit('.', 1)[0]}.png",
|
97 |
+
mime="image/png",
|
98 |
+
)
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Pillow==11.1.0
|
2 |
+
Requests==2.32.3
|
3 |
+
streamlit==1.42.0
|
4 |
+
torch==2.6.0
|
5 |
+
torchvision==0.21.0
|
6 |
+
transformers==4.48.3
|