Spaces:
Sleeping
Sleeping
File size: 5,127 Bytes
6c3cf43 b420fee 38c2418 6c3cf43 38c2418 6c3cf43 38c2418 6c3cf43 38c2418 6c3cf43 38c2418 6c3cf43 38c2418 a285409 b25e082 38c2418 6c3cf43 38c2418 b25e082 38c2418 b420fee 38c2418 b25e082 6c3cf43 38c2418 6c3cf43 b420fee 38c2418 b420fee bda744e b420fee b25e082 a285409 38c2418 b25e082 38c2418 6c3cf43 38c2418 b420fee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 |
import gradio as gr
import requests
from bs4 import BeautifulSoup
import pandas as pd
from transformers import pipeline
import plotly.express as px
from datetime import datetime, timedelta
# Sentiment Analysis Model
sentiment_model = pipeline(model="finiteautomata/bertweet-base-sentiment-analysis")
# Function to encode special characters in the search query
def encode_special_characters(text):
encoded_text = ''
special_characters = {'&': '%26', '=': '%3D', '+': '%2B', ' ': '%20'}
for char in text.lower():
encoded_text += special_characters.get(char, char)
return encoded_text
# Function to fetch news articles
def fetch_news(query, num_articles=10):
encoded_query = encode_special_characters(query)
url = f"https://news.google.com/search?q={encoded_query}&hl=en-US&gl=in&ceid=US%3Aen&num={num_articles}"
try:
response = requests.get(url)
response.raise_for_status()
except requests.RequestException as e:
print(f"Error fetching news: {e}")
return pd.DataFrame()
soup = BeautifulSoup(response.text, 'html.parser')
articles = soup.find_all('article')
news_data = []
for article in articles[:num_articles]:
link = article.find('a')['href'].replace("./articles/", "https://news.google.com/articles/")
text_parts = article.get_text(separator='\n').split('\n')
news_data.append({
'Title': text_parts[2] if len(text_parts) > 2 else 'Missing',
'Source': text_parts[0] if len(text_parts) > 0 else 'Missing',
'Time': text_parts[3] if len(text_parts) > 3 else 'Missing',
'Author': text_parts[4].split('By ')[-1] if len(text_parts) > 4 else 'Missing',
'Link': link
})
return pd.DataFrame(news_data)
# Function to perform sentiment analysis
def analyze_sentiment(text):
result = sentiment_model(text)[0]
return result['label'], result['score']
# Function to fetch stock data from Alpha Vantage API
def fetch_stock_data(company_name):
url = "https://alpha-vantage.p.rapidapi.com/query"
querystring = {"function": "TIME_SERIES_DAILY", "symbol": company_name, "outputsize": "compact", "datatype": "json"}
headers = {
"x-rapidapi-key": "e078dae417mshb13ddc2d8149768p1608e9jsn888ce49e8554",
"x-rapidapi-host": "alpha-vantage.p.rapidapi.com"
}
try:
response = requests.get(url, headers=headers, params=querystring)
response.raise_for_status()
data = response.json()
except requests.RequestException as e:
print(f"Error fetching stock data: {e}")
return None
if "Time Series (Daily)" not in data:
return None
stock_data = data["Time Series (Daily)"]
df = pd.DataFrame.from_dict(stock_data, orient='index')
df.index = pd.to_datetime(df.index)
df = df.astype(float)
return df
# Main function to process news and perform analysis
def news_and_analysis(query):
# Fetch news
news_df = fetch_news(query)
if news_df.empty:
return "No news articles found.", None, None
# Perform sentiment analysis
news_df['Sentiment'], news_df['Sentiment_Score'] = zip(*news_df['Title'].apply(analyze_sentiment))
# Create sentiment plot
sentiment_fig = px.bar(
news_df,
x='Time',
y='Sentiment_Score',
color='Sentiment',
color_discrete_map={'positive': 'green', 'neutral': 'gray', 'negative': 'red'},
title='News Sentiment Over Time',
labels={'Time': 'Publication Time', 'Sentiment_Score': 'Sentiment Score'}
)
# Check if the input query is a company name (heuristic: if it's more than one word)
if len(query.split()) > 1:
stock_df = fetch_stock_data(query)
if stock_df is not None:
stock_fig = px.line(
stock_df,
x=stock_df.index,
y='4. close',
title=f'{query} Stock Price Over Time',
labels={'index': 'Date', '4. close': 'Closing Price'}
)
return news_df, sentiment_fig, stock_fig
return news_df, sentiment_fig, None
# Gradio interface
with gr.Blocks() as demo:
gr.Markdown(
"""
# Financial News Sentiment Analysis
Analyze the sentiment of news articles related to financial topics or companies.
Enter a topic or company name to get started.
"""
)
with gr.Row():
with gr.Column():
topic = gr.Textbox(label="Enter a financial topic or company name", placeholder="e.g., Apple Inc.")
analyze_btn = gr.Button(value="Analyze")
with gr.Column():
news_output = gr.DataFrame(label="News and Sentiment Analysis")
sentiment_plot = gr.Plot(label="Sentiment Analysis")
stock_plot = gr.Plot(label="Stock Price Analysis")
analyze_btn.click(
news_and_analysis,
inputs=[topic],
outputs=[news_output, sentiment_plot, stock_plot]
)
if __name__ == "__main__":
demo.launch()
|