mathtext / app.py
cetinca's picture
Update api name
17f6802 verified
raw
history blame
7.89 kB
import inspect
import json
import logging
import os
from typing import List, Type
import gradio as gr
import spacy # noqa
from dotenv import load_dotenv
from gradio import routes
from transformers import pipeline
load_dotenv()
TOKENS2INT_ERROR_INT = 32202
log = logging.getLogger()
ONES = [
"zero", "one", "two", "three", "four", "five", "six", "seven", "eight",
"nine", "ten", "eleven", "twelve", "thirteen", "fourteen", "fifteen",
"sixteen", "seventeen", "eighteen", "nineteen",
]
# token_mapping = json.load(open('str_mapping.json'))
CHAR_MAPPING = {
"-": " ",
"_": " ",
}
CHAR_MAPPING.update((str(i), word) for i, word in enumerate([" " + s + " " for s in ONES]))
TOKEN_MAPPING = dict(enumerate([" " + s + " " for s in ONES]))
BQ_JSON = os.environ['BQ_JSON']
def tokenize(text):
return text.split()
def detokenize(tokens):
return ' '.join(tokens)
def replace_tokens(tokens, token_mapping=TOKEN_MAPPING):
return [token_mapping.get(tok, tok) for tok in tokens]
def replace_chars(text, char_mapping=CHAR_MAPPING):
return ''.join((char_mapping.get(c, c) for c in text))
def tokens2int(tokens, numwords={}):
""" Convert an English str containing number words into an int
>>> text2int("nine")
9
>>> text2int("forty two")
42
>>> text2int("1 2 three")
123
"""
if not numwords:
tens = ["", "", "twenty", "thirty", "forty", "fifty", "sixty", "seventy", "eighty", "ninety"]
scales = ["hundred", "thousand", "million", "billion", "trillion"]
numwords["and"] = (1, 0)
for idx, word in enumerate(ONES):
numwords[word] = (1, idx)
for idx, word in enumerate(tens):
numwords[word] = (1, idx * 10)
for idx, word in enumerate(scales):
numwords[word] = (10 ** (idx * 3 or 2), 0)
current = result = 0
for word in tokens:
if word not in numwords:
raise Exception("Illegal word: " + word)
scale, increment = numwords[word]
current = current * scale + increment
if scale > 100:
result += current
current = 0
return str(result + current)
def text2int(text):
return tokens2int(tokenize(replace_chars(text)))
def try_text2int(text):
text = str(text)
try:
intstr = tokens2int(tokens2int(tokenize(replace_chars(text))))
except Exception as e:
log.error(str(e))
log.error(f'User input: {text}')
intstr = TOKENS2INT_ERROR_INT
return str(intstr)
def try_text2int_preprocessed(text):
text = str(text)
try:
tokens = replace_tokens(tokenize(replace_chars(str(text))))
except Exception as e:
log.error(str(e))
tokens = text.split()
try:
intstr = tokens2int(tokens)
except Exception as e:
log.error(str(e))
intstr = str(TOKENS2INT_ERROR_INT)
return intstr
def get_types(cls_set: List[Type], component: str):
docset = []
types = []
if component == "input":
for cls in cls_set:
doc = inspect.getdoc(cls)
doc_lines = doc.split("\n")
docset.append(doc_lines[1].split(":")[-1])
types.append(doc_lines[1].split(")")[0].split("(")[-1])
else:
for cls in cls_set:
doc = inspect.getdoc(cls)
doc_lines = doc.split("\n")
docset.append(doc_lines[-1].split(":")[-1])
types.append(doc_lines[-1].split(")")[0].split("(")[-1])
return docset, types
routes.get_types = get_types
sentiment = pipeline(task="sentiment-analysis", model="distilbert-base-uncased-finetuned-sst-2-english")
def get_sentiment(text):
return sentiment(text)
with gr.Blocks() as html_block:
gr.Markdown("# Rori - Mathbot")
with gr.Tab("Text to integer"):
inputs_text2int = [
gr.Text(placeholder="Type a number as text or a sentence", label="Text to process",
value="forty two"),
]
outputs_text2int = gr.Textbox(label="Output integer")
button_text2int = gr.Button("text2int")
button_text2int.click(
fn=try_text2int,
inputs=inputs_text2int,
outputs=outputs_text2int,
api_name="text2int",
)
examples_text2int = [
"one thousand forty seven",
"one hundred",
]
gr.Examples(examples=examples_text2int, inputs=inputs_text2int)
gr.Markdown(r"""
## API
```python
import requests
requests.post(
url="https://tangibleai-mathtext.hf.space/run/text2int", json={"data": ["one hundred forty five"]}
).json()
```
Or using `curl`:
```bash
curl -X POST https://tangibleai-mathtext.hf.space/run/text2int -H 'Content-Type: application/json' -d '{"data": ["one hundred forty five"]}'
```
{bq_json}""" + f"{json.loads(BQ_JSON)['type']}")
with gr.Tab("Text to integer preprocessed"):
inputs_text2int_preprocessed = [
gr.Text(placeholder="Type a number as text or a sentence", label="Text to process",
value="forty two"),
]
outputs_text2int_preprocessed = gr.Textbox(label="Output integer")
button_text2int = gr.Button("text2int preprocessed")
button_text2int.click(
fn=try_text2int_preprocessed,
inputs=inputs_text2int_preprocessed,
outputs=outputs_text2int_preprocessed,
api_name="text2int-preprocessed",
)
examples_text2int_preprocessed = [
"one thousand forty seven",
"one hundred",
]
gr.Examples(examples=examples_text2int_preprocessed, inputs=inputs_text2int_preprocessed)
gr.Markdown(r"""
## API
```python
import requests
requests.post(
url="https://tangibleai-mathtext.hf.space/run/text2int-preprocessed", json={"data": ["one hundred forty five"]}
).json()
```
Or using `curl`:
```bash
curl -X POST https://tangibleai-mathtext.hf.space/run/text2int-preprocessed -H 'Content-Type: application/json' -d '{"data": ["one hundred forty five"]}'
```
{bq_json}""" + f"{json.loads(BQ_JSON)['type']}")
with gr.Tab("Sentiment Analysis"):
inputs_sentiment = [
gr.Text(placeholder="Type a number as text or a sentence", label="Text to process",
value="I really like it!"),
]
outputs_sentiment = gr.Textbox(label="Sentiment result")
button_sentiment = gr.Button("sentiment analysis")
button_sentiment.click(
get_sentiment,
inputs=inputs_sentiment,
outputs=outputs_sentiment,
api_name="sentiment-analysis"
)
examples_sentiment = [
["Totally agree!"],
["Sorry, I can not accept this!"],
]
gr.Examples(examples=examples_sentiment, inputs=inputs_sentiment)
gr.Markdown(r"""
## API
```python
import requests
requests.post(
url="https://tangibleai-mathtext.hf.space/run/sentiment-analysis", json={"data": ["You are right!"]}
).json()
```
Or using `curl`:
```bash
curl -X POST https://tangibleai-mathtext.hf.space/run/sentiment-analysis -H 'Content-Type: application/json' -d '{"data": ["You are right!"]}'
```
{bq_json}""" + f"{json.loads(BQ_JSON)['type']}")
# interface = gr.Interface(lambda x: x, inputs=["text"], outputs=["text"])
# html_block.input_components = interface.input_components
# html_block.output_components = interface.output_components
# html_block.examples = None
html_block.predict_durations = []
html_block.launch()