Spaces:
Runtime error
Runtime error
File size: 4,230 Bytes
459027d d625a73 c25d79d d625a73 459027d d625a73 459027d 6cb7f39 d625a73 aafc5b3 d625a73 aafc5b3 d625a73 c25d79d d625a73 6cb7f39 d625a73 6cb7f39 d625a73 6cb7f39 20c813e 6cb7f39 d625a73 459027d 6cb7f39 bf32265 c25d79d bf32265 ff06403 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 |
import inspect
import json
import os
import gradio as gr
from gradio import routes
import spacy
from typing import List, Type
ONES = [
"zero", "one", "two", "three", "four", "five", "six", "seven", "eight",
"nine", "ten", "eleven", "twelve", "thirteen", "fourteen", "fifteen",
"sixteen", "seventeen", "eighteen", "nineteen",
]
# token_mapping = json.load(open('str_mapping.json'))
CHAR_MAPPING = {
"-": " ",
"_": " ",
}
CHAR_MAPPING.update((str(i), word) for i, word in enumerate([" " + s + " " for s in ONES]))
TOKEN_MAPPING = dict(enumerate([" " + s + " " for s in ONES]))
BQ_JSON = os.environ['BQ_JSON']
def tokenize(text):
return text.split()
def detokenize(tokens):
return ' '.join(tokens)
def replace_tokens(tokens, token_mapping=TOKEN_MAPPING):
return [token_mapping.get(tok, tok) for tok in tokens]
def replace_chars(text, char_mapping=CHAR_MAPPING):
return ''.join((char_mapping.get(c, c) for c in text))
def tokens2int(tokens, numwords={}):
""" Convert an English str containing number words into an int
>>> text2int("nine")
9
>>> text2int("forty two")
42
>>> text2int("1 2 three")
123
"""
if not numwords:
tens = ["", "", "twenty", "thirty", "forty", "fifty", "sixty", "seventy", "eighty", "ninety"]
scales = ["hundred", "thousand", "million", "billion", "trillion"]
numwords["and"] = (1, 0)
for idx, word in enumerate(ONES):
numwords[word] = (1, idx)
for idx, word in enumerate(tens):
numwords[word] = (1, idx * 10)
for idx, word in enumerate(scales):
numwords[word] = (10 ** (idx * 3 or 2), 0)
current = result = 0
for word in tokens:
if word not in numwords:
raise Exception("Illegal word: " + word)
scale, increment = numwords[word]
current = current * scale + increment
if scale > 100:
result += current
current = 0
return str(result + current)
def text2int(text):
return tokens2int(tokenize(replace_chars(text)))
def text2int_preprocessed(text):
return tokens2int(replace_tokens(tokenize(replace_chars(text))))
def get_types(cls_set: List[Type], component: str):
docset = []
types = []
if component == "input":
for cls in cls_set:
doc = inspect.getdoc(cls)
doc_lines = doc.split("\n")
docset.append(doc_lines[1].split(":")[-1])
types.append(doc_lines[1].split(")")[0].split("(")[-1])
else:
for cls in cls_set:
doc = inspect.getdoc(cls)
doc_lines = doc.split("\n")
docset.append(doc_lines[-1].split(":")[-1])
types.append(doc_lines[-1].split(")")[0].split("(")[-1])
return docset, types
routes.get_types = get_types
with gr.Blocks() as html_block:
gr.Markdown("# Gradio Blocks (3.0) with REST API")
textbox_input = gr.Textbox(
value="forty-two",
label="Input number words:",
)
button_text2int = gr.Button("text2int")
button_text2int_preprocessed = gr.Button("text2int with preprocessing")
textbox_output = gr.Textbox(
value="42",
label="Output integer:"
)
button_text2int.click(text2int, inputs=[textbox_input], outputs=[textbox_output])
button_text2int_preprocessed.click(text2int_preprocessed, inputs=[textbox_input], outputs=[textbox_output])
gr.Markdown(r"""
## API
You can select which function to run using the `fn_index` argument:
```python
import requests
requests.post(
url="https://Hobson-gradio-rest-api.hf.space/api/predict/", json={"data": ["one hundred forty-two"], "fn_index": 0}
).json()
```
Or using `curl`:
```bash
curl -X POST https://Hobson-gradio-rest-api.hf.space/api/predict/ -H 'Content-Type: application/json' -d '{"data": ["one hundred forty-two"], "fn_index": 0}'
```
""" + f"{json.loads()['type']}")
interface = gr.Interface(lambda: None, inputs=[textbox_input], outputs=[textbox_output])
html_block.input_components = interface.input_components
html_block.output_components = interface.output_components
html_block.examples = None
html_block.predict_durations = []
bapp = html_block.launch()
|