File size: 4,230 Bytes
459027d
d625a73
c25d79d
d625a73
459027d
d625a73
459027d
 
6cb7f39
d625a73
 
 
 
 
 
 
 
 
 
 
aafc5b3
d625a73
aafc5b3
d625a73
c25d79d
 
d625a73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6cb7f39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d625a73
6cb7f39
 
 
 
 
 
 
d625a73
 
6cb7f39
 
 
 
 
 
 
 
 
20c813e
6cb7f39
 
d625a73
 
 
 
 
 
 
 
459027d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6cb7f39
 
bf32265
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c25d79d
bf32265
 
 
 
 
 
 
 
ff06403
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import inspect
import json
import os
import gradio as gr
from gradio import routes
import spacy
from typing import List, Type


ONES = [
    "zero", "one", "two", "three", "four", "five", "six", "seven", "eight",
    "nine", "ten", "eleven", "twelve", "thirteen", "fourteen", "fifteen",
    "sixteen", "seventeen", "eighteen", "nineteen",
]

# token_mapping = json.load(open('str_mapping.json'))
CHAR_MAPPING = {
    "-": " ",
    "_": " ",
}
CHAR_MAPPING.update((str(i), word) for i, word in enumerate([" " + s + " " for s in ONES]))

TOKEN_MAPPING = dict(enumerate([" " + s + " " for s in ONES]))

BQ_JSON = os.environ['BQ_JSON']


def tokenize(text):
    return text.split()


def detokenize(tokens):
    return ' '.join(tokens)


def replace_tokens(tokens, token_mapping=TOKEN_MAPPING):
    return [token_mapping.get(tok, tok) for tok in tokens]


def replace_chars(text, char_mapping=CHAR_MAPPING):
    return ''.join((char_mapping.get(c, c) for c in text))


def tokens2int(tokens, numwords={}):
    """ Convert an English str containing number words into an int

    >>> text2int("nine")
    9
    >>> text2int("forty two")
    42
    >>> text2int("1 2 three")
    123
    """
    if not numwords:

        tens = ["", "", "twenty", "thirty", "forty", "fifty", "sixty", "seventy", "eighty", "ninety"]

        scales = ["hundred", "thousand", "million", "billion", "trillion"]

        numwords["and"] = (1, 0)
        for idx, word in enumerate(ONES):
            numwords[word] = (1, idx)
        for idx, word in enumerate(tens):
            numwords[word] = (1, idx * 10)
        for idx, word in enumerate(scales):
            numwords[word] = (10 ** (idx * 3 or 2), 0)

    current = result = 0

    for word in tokens:
        if word not in numwords:
            raise Exception("Illegal word: " + word)

        scale, increment = numwords[word]
        current = current * scale + increment
        if scale > 100:
            result += current
            current = 0

    return str(result + current)


def text2int(text):
    return tokens2int(tokenize(replace_chars(text)))


def text2int_preprocessed(text):
    return tokens2int(replace_tokens(tokenize(replace_chars(text))))


def get_types(cls_set: List[Type], component: str):
    docset = []
    types = []
    if component == "input":
        for cls in cls_set:
            doc = inspect.getdoc(cls)
            doc_lines = doc.split("\n")
            docset.append(doc_lines[1].split(":")[-1])
            types.append(doc_lines[1].split(")")[0].split("(")[-1])
    else:
        for cls in cls_set:
            doc = inspect.getdoc(cls)
            doc_lines = doc.split("\n")
            docset.append(doc_lines[-1].split(":")[-1])
            types.append(doc_lines[-1].split(")")[0].split("(")[-1])
    return docset, types


routes.get_types = get_types

with gr.Blocks() as html_block:
    gr.Markdown("# Gradio Blocks (3.0) with REST API")
    textbox_input = gr.Textbox(
        value="forty-two",
        label="Input number words:",
    )
    button_text2int = gr.Button("text2int")
    button_text2int_preprocessed = gr.Button("text2int with preprocessing")
    textbox_output = gr.Textbox(
        value="42",
        label="Output integer:"
    )
    button_text2int.click(text2int, inputs=[textbox_input], outputs=[textbox_output])
    button_text2int_preprocessed.click(text2int_preprocessed, inputs=[textbox_input], outputs=[textbox_output])
    gr.Markdown(r"""

## API

You can select which function to run using the `fn_index` argument:

```python
import requests

requests.post(
    url="https://Hobson-gradio-rest-api.hf.space/api/predict/", json={"data": ["one hundred forty-two"], "fn_index": 0}
).json()
```

Or using `curl`:

```bash
curl -X POST https://Hobson-gradio-rest-api.hf.space/api/predict/ -H 'Content-Type: application/json' -d '{"data": ["one hundred forty-two"], "fn_index": 0}'
```
""" + f"{json.loads()['type']}")

interface = gr.Interface(lambda: None, inputs=[textbox_input], outputs=[textbox_output])

html_block.input_components = interface.input_components
html_block.output_components = interface.output_components
html_block.examples = None
html_block.predict_durations = []

bapp = html_block.launch()