Spaces:
Runtime error
Runtime error
File size: 7,891 Bytes
459027d d625a73 8c4b92d c25d79d 90009ee d625a73 8c4b92d 9b8bd50 90009ee 9b8bd50 459027d 8c4b92d 6cb7f39 d625a73 aafc5b3 d625a73 aafc5b3 d625a73 c25d79d d625a73 6cb7f39 d625a73 6cb7f39 d625a73 6cb7f39 20c813e 6cb7f39 d625a73 8c4b92d d625a73 459027d 6cb7f39 bf32265 90009ee bf32265 05b4410 bf32265 05b4410 bf32265 05b4410 bf32265 05b4410 bf32265 05b4410 bf32265 05b4410 bf32265 90009ee bf32265 90009ee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 |
import inspect
import json
import logging
import os
from typing import List, Type
import gradio as gr
import spacy # noqa
from dotenv import load_dotenv
from gradio import routes
from transformers import pipeline
load_dotenv()
TOKENS2INT_ERROR_INT = 32202
log = logging.getLogger()
ONES = [
"zero", "one", "two", "three", "four", "five", "six", "seven", "eight",
"nine", "ten", "eleven", "twelve", "thirteen", "fourteen", "fifteen",
"sixteen", "seventeen", "eighteen", "nineteen",
]
# token_mapping = json.load(open('str_mapping.json'))
CHAR_MAPPING = {
"-": " ",
"_": " ",
}
CHAR_MAPPING.update((str(i), word) for i, word in enumerate([" " + s + " " for s in ONES]))
TOKEN_MAPPING = dict(enumerate([" " + s + " " for s in ONES]))
BQ_JSON = os.environ['BQ_JSON']
def tokenize(text):
return text.split()
def detokenize(tokens):
return ' '.join(tokens)
def replace_tokens(tokens, token_mapping=TOKEN_MAPPING):
return [token_mapping.get(tok, tok) for tok in tokens]
def replace_chars(text, char_mapping=CHAR_MAPPING):
return ''.join((char_mapping.get(c, c) for c in text))
def tokens2int(tokens, numwords={}):
""" Convert an English str containing number words into an int
>>> text2int("nine")
9
>>> text2int("forty two")
42
>>> text2int("1 2 three")
123
"""
if not numwords:
tens = ["", "", "twenty", "thirty", "forty", "fifty", "sixty", "seventy", "eighty", "ninety"]
scales = ["hundred", "thousand", "million", "billion", "trillion"]
numwords["and"] = (1, 0)
for idx, word in enumerate(ONES):
numwords[word] = (1, idx)
for idx, word in enumerate(tens):
numwords[word] = (1, idx * 10)
for idx, word in enumerate(scales):
numwords[word] = (10 ** (idx * 3 or 2), 0)
current = result = 0
for word in tokens:
if word not in numwords:
raise Exception("Illegal word: " + word)
scale, increment = numwords[word]
current = current * scale + increment
if scale > 100:
result += current
current = 0
return str(result + current)
def text2int(text):
return tokens2int(tokenize(replace_chars(text)))
def try_text2int(text):
text = str(text)
try:
intstr = tokens2int(tokens2int(tokenize(replace_chars(text))))
except Exception as e:
log.error(str(e))
log.error(f'User input: {text}')
intstr = TOKENS2INT_ERROR_INT
return str(intstr)
def try_text2int_preprocessed(text):
text = str(text)
try:
tokens = replace_tokens(tokenize(replace_chars(str(text))))
except Exception as e:
log.error(str(e))
tokens = text.split()
try:
intstr = tokens2int(tokens)
except Exception as e:
log.error(str(e))
intstr = str(TOKENS2INT_ERROR_INT)
return intstr
def get_types(cls_set: List[Type], component: str):
docset = []
types = []
if component == "input":
for cls in cls_set:
doc = inspect.getdoc(cls)
doc_lines = doc.split("\n")
docset.append(doc_lines[1].split(":")[-1])
types.append(doc_lines[1].split(")")[0].split("(")[-1])
else:
for cls in cls_set:
doc = inspect.getdoc(cls)
doc_lines = doc.split("\n")
docset.append(doc_lines[-1].split(":")[-1])
types.append(doc_lines[-1].split(")")[0].split("(")[-1])
return docset, types
routes.get_types = get_types
sentiment = pipeline(task="sentiment-analysis", model="distilbert-base-uncased-finetuned-sst-2-english")
def get_sentiment(text):
return sentiment(text)
with gr.Blocks() as html_block:
gr.Markdown("# Rori - Mathbot")
with gr.Tab("Text to integer"):
inputs_text2int = [
gr.Text(placeholder="Type a number as text or a sentence", label="Text to process",
value="forty two"),
]
outputs_text2int = gr.Textbox(label="Output integer")
button_text2int = gr.Button("text2int")
button_text2int.click(
fn=try_text2int,
inputs=inputs_text2int,
outputs=outputs_text2int,
api_name="text2int",
)
examples_text2int = [
"one thousand forty seven",
"one hundred",
]
gr.Examples(examples=examples_text2int, inputs=inputs_text2int)
gr.Markdown(r"""
## API
```python
import requests
requests.post(
url="https://tangibleai-mathtext.hf.space/run/text2int", json={"data": ["one hundred forty five"]}
).json()
```
Or using `curl`:
```bash
curl -X POST https://tangibleai-mathtext.hf.space/run/text2int -H 'Content-Type: application/json' -d '{"data": ["one hundred forty five"]}'
```
{bq_json}""" + f"{json.loads(BQ_JSON)['type']}")
with gr.Tab("Text to integer preprocessed"):
inputs_text2int_preprocessed = [
gr.Text(placeholder="Type a number as text or a sentence", label="Text to process",
value="forty two"),
]
outputs_text2int_preprocessed = gr.Textbox(label="Output integer")
button_text2int = gr.Button("text2int preprocessed")
button_text2int.click(
fn=try_text2int_preprocessed,
inputs=inputs_text2int_preprocessed,
outputs=outputs_text2int_preprocessed,
api_name="text2int_preprocessed",
)
examples_text2int_preprocessed = [
"one thousand forty seven",
"one hundred",
]
gr.Examples(examples=examples_text2int_preprocessed, inputs=inputs_text2int_preprocessed)
gr.Markdown(r"""
## API
```python
import requests
requests.post(
url="https://tangibleai-mathtext.hf.space/run/text2int_preprocessed", json={"data": ["one hundred forty five"]}
).json()
```
Or using `curl`:
```bash
curl -X POST https://tangibleai-mathtext.hf.space/run/text2int_preprocessed -H 'Content-Type: application/json' -d '{"data": ["one hundred forty five"]}'
```
{bq_json}""" + f"{json.loads(BQ_JSON)['type']}")
with gr.Tab("Sentiment Analysis"):
inputs_sentiment = [
gr.Text(placeholder="Type a number as text or a sentence", label="Text to process",
value="I really like it!"),
]
outputs_sentiment = gr.Textbox(label="Sentiment result")
button_sentiment = gr.Button("sentiment analysis")
button_sentiment.click(
get_sentiment,
inputs=inputs_sentiment,
outputs=outputs_sentiment,
api_name="sentiment-analysis"
)
examples_sentiment = [
["Totally agree!"],
["Sorry, I can not accept this!"],
]
gr.Examples(examples=examples_sentiment, inputs=inputs_sentiment)
gr.Markdown(r"""
## API
```python
import requests
requests.post(
url="https://tangibleai-mathtext.hf.space/run/sentiment-analysis", json={"data": ["You are right!"]}
).json()
```
Or using `curl`:
```bash
curl -X POST https://tangibleai-mathtext.hf.space/run/sentiment-analysis -H 'Content-Type: application/json' -d '{"data": ["You are right!"]}'
```
{bq_json}""" + f"{json.loads(BQ_JSON)['type']}")
# interface = gr.Interface(lambda x: x, inputs=["text"], outputs=["text"])
# html_block.input_components = interface.input_components
# html_block.output_components = interface.output_components
# html_block.examples = None
html_block.predict_durations = []
html_block.launch()
|