File size: 3,799 Bytes
38a3c61
 
 
 
 
 
 
 
 
 
 
 
 
1ef2263
38a3c61
 
 
 
4a30677
 
f73ccd7
 
 
 
 
1ef2263
f73ccd7
7e31555
1ef2263
f73ccd7
 
 
 
 
4a30677
38a3c61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import os
from fastapi import FastAPI, HTTPException
from fastapi.responses import JSONResponse
from pydantic import BaseModel
from transformers import pipeline
from torchvision import transforms
from PIL import Image
import requests
from io import BytesIO
from steps.preprocess import process_image
from huggingface_hub import hf_hub_download
from architecture.resnet import ResNet
import torch
import logging

app = FastAPI()

image_size = 256
hf_token = os.environ.get("api_read")

VALID_API_KEYS = os.environ.get("api_key")


@app.middleware("http")
async def verify_api_key(request, call_next):
    logging.info(f"Received request: {request.method} {request.url}")
    api_key = request.headers.get("x-api-key")
    if api_key is None or api_key not in VALID_API_KEYS:
        logging.warning("Unauthorized access attempt.")
        raise HTTPException(status_code=403, detail="Unauthorized")
    response = await call_next(request)
    return response


print(hf_token)

models_locations = [
    {
        "repo_id": "TamisAI/category-lamp",
        "subfolder": "maison-jansen/palmtree-152-0005-32-256",
        "filename": "palmtree-jansen.pth",
    },
    {
        "repo_id": "TamisAI/category-lamp",
        "subfolder": "maison-charles/corail-152-0001-32-256",
        "filename": "maison-charles-corail.pth",
    },
]

device = torch.device("cpu")


# Modèle de données pour les requêtes
class PredictRequest(BaseModel):
    imageUrl: str
    modelName: str


# Dictionnaire pour stocker les pipelines de modèles
model_pipelines = {}

# Create a single instance of the ResNet model
base_model = ResNet("resnet152", num_output_neurons=2).to(device)


@app.on_event("startup")
async def load_models():
    # Charger les modèles au démarrage
    print(f"Loading models...{len(models_locations)}")

    for model_location in models_locations:
        try:
            print(f"Loading model: {model_location['filename']}")
            model_weight = hf_hub_download(
                repo_id=model_location["repo_id"],
                subfolder=model_location["subfolder"],
                filename=model_location["filename"],
                token=hf_token,
            )
            model = base_model.__class__("resnet152", num_output_neurons=2).to(device)
            model.load_state_dict(
                torch.load(model_weight, weights_only=True, map_location=device)
            )
            model.eval()
            model_pipelines[model_location["filename"]] = model
        except Exception as e:
            print(f"Error loading model {model_location['filename']}: {e}")
    print(f"Models loaded. {len(model_pipelines)}")


@app.post("/predict")
async def predict(request: PredictRequest):
    image_url = request.imageUrl
    model_name = request.modelName

    # Télécharger l'image depuis l'URL
    try:
        response = requests.get(image_url)
        image = Image.open(BytesIO(response.content))
    except Exception as e:
        raise HTTPException(status_code=400, detail="Invalid image URL")

    # Vérifier si le modèle est chargé
    if model_name not in model_pipelines:
        raise HTTPException(status_code=404, detail="Model not found")

    # Preprocess the image
    processed_image = process_image(image, size=image_size)

    # Convert to tensor
    image_tensor = transforms.ToTensor()(processed_image).unsqueeze(0)

    model = model_pipelines[model_name]

    # Perform inference
    with torch.no_grad():
        outputs = model(image_tensor)
        probabilities = torch.nn.functional.softmax(outputs, dim=1)
        predicted_probabilities = probabilities.numpy().tolist()
        confidence = round(predicted_probabilities[0][1], 2)

    # Return the probabilities as JSON
    return JSONResponse(content={"confidence": confidence})