import streamlit as st import pandas as pd from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer from textblob import TextBlob from transformers import pipeline import matplotlib.pyplot as plt import base64 import os from wordcloud import WordCloud import time # Function to perform sentiment analysis using Hugging Face model hf_sentiment_analyzer = pipeline( "sentiment-analysis", "Dmyadav2001/Sentimental-Analysis" ) def analyze_hf_sentiment(text): if len(text) > 512: temp = text[:511] text = temp result = hf_sentiment_analyzer(text) label = result[0]["label"] if label == "LABEL_1": return "Positive" elif label == "LABEL_0": return "Negative" elif label == "LABEL_2": return "Neutral" # Function to perform sentiment analysis using VADER def analyze_vader_sentiment(text): analyzer = SentimentIntensityAnalyzer() vader_score = analyzer.polarity_scores(text)["compound"] if vader_score > 0: return "Positive" elif vader_score == 0: return "Neutral" else: return "Negative" # Function to perform sentiment analysis using TextBlob def analyze_textblob_sentiment(text): analysis = TextBlob(text) sentiment_score = analysis.sentiment.polarity if sentiment_score > 0: return "Positive" elif sentiment_score == 0: return "Neutral" else: return "Negative" # Function to display DataFrame with updated sentiment column def display_dataframe(df): st.write(df) # Function to display pie chart for sentiment distribution def display_pie_chart(df, column): sentiment_counts = df[column].value_counts() fig, ax = plt.subplots() ax.pie( sentiment_counts, labels=sentiment_counts.index, autopct="%1.1f%%", startangle=140, ) ax.axis("equal") st.pyplot(fig) # Add a download button if st.button('Download Pie Chart'): # Save the pie chart as an image file plt.savefig('pie_chart.png') # Offer the image file for download st.download_button(label='Download Pie Chart Image', data=open('pie_chart.png', 'rb').read(), file_name='pie_chart.png', mime='image/png') # Function to display word cloud def display_wordcloud(text_data): wordcloud = WordCloud(width=800, height=400, background_color="white").generate( text_data ) fig, ax = plt.subplots(figsize=(10, 5)) ax.imshow(wordcloud, interpolation="bilinear") ax.axis("off") st.pyplot(fig) # Add a download button if st.button('Download Word Cloud'): # Save the word cloud as an image file plt.savefig('word_cloud.png') # Offer the image file for download st.download_button(label='Download Word Cloud Image', data=open('word_cloud.png', 'rb').read(), file_name='word_cloud.png', mime='image/png') # Function to download CSV file def download_csv(df): csv = df.to_csv(index=False) b64 = base64.b64encode(csv.encode()).decode() # B64 encoding href = f'Download CSV File' st.markdown(href, unsafe_allow_html=True) # Function to count occurrences of keywords and sentiment distribution def count_reviews_with_keywords(df,keywords): # keywords=['logistics', 'supply chain', 'cargo', 'shipment', 'freight', 'package', 'tracking'] keyword_counts = {keyword: {"Positive": 0, "Negative": 0, "Total": 0} for keyword in keywords} for _, row in df.iterrows(): review_text = row["review_text"] sentiment = row["Sentiment"] for keyword in keywords: if keyword.lower() in review_text.lower(): keyword_counts[keyword]["Total"] += 1 if sentiment == "Positive": keyword_counts[keyword]["Positive"] += 1 elif sentiment == "Negative": keyword_counts[keyword]["Negative"] += 1 return keyword_counts # Streamlit UI st.set_page_config(page_title="SentimentAnalysis App", page_icon=":smiley:") # st.title("SentimentAnalysis App") text = "SentimentAnalysis App" t = st.empty() for i in range(len(text) + 1): t.markdown("## %s" % text[0:i]) time.sleep(0.1) # Sidebar st.sidebar.title("Options") input_option = st.sidebar.radio("Select Input Option", ("Free Text", "CSV Files")) selected_model = st.sidebar.radio( "Select Sentiment Analysis Model", ("VADER", "TextBlob", "Hugging Face") ) result_option = st.sidebar.radio( "Select Result Display Option", ("DataFrame", "Pie Chart", "Bar Chart", "Keyword Frequency", "WordCloud", "Comparative Sentiment Analysis"), ) # Main content progress_label = st.empty() # Define progress label progress_bar = st.progress(0) progress = 0 # Directory path to store processed files processed_directory = "processed_files" # Ensure the directory exists, if not create it os.makedirs(processed_directory, exist_ok=True) # List to store processed filenames processed_files = [] # Function to get filenames from the processed directory def get_processed_filenames(): return [ f for f in os.listdir(processed_directory) if os.path.isfile(os.path.join(processed_directory, f)) ] if input_option == "Free Text": st.subheader("Enter review for sentiment analysis:") user_input = st.text_area("", "") if not user_input: st.info("Enter some text above for sentiment analysis.") else: with st.spinner("Analyzing..."): if selected_model == "Hugging Face": result = analyze_hf_sentiment(user_input) elif selected_model == "VADER": result = analyze_vader_sentiment(user_input) elif selected_model == "TextBlob": result = analyze_textblob_sentiment(user_input) st.write("Sentiment:", result) if input_option == "CSV Files": st.subheader("Select CSV files for sentiment analysis:") # Uploading new file files = st.file_uploader( "Upload New File", type=["csv"], accept_multiple_files=True ) if files: # Process uploaded new files for file in files: if file.type != "text/csv": st.warning( "Uploaded file is not a CSV file. Please upload a CSV file only." ) else: df = pd.read_csv(file) if "review_text" not in df.columns: st.warning( "Uploaded CSV file doesn't contain 'review_text' column. Please check the CSV file format." ) else: total_rows = len(df) sentiments_v = [] sentiments_tb = [] sentiments_hf = [] for review_text in df["review_text"]: sentiments_v.append(analyze_vader_sentiment(review_text)) sentiments_tb.append(analyze_textblob_sentiment(review_text)) sentiments_hf.append(analyze_hf_sentiment(review_text)) progress += 1 progress_label.text(f"{progress}/{total_rows}") progress_bar.progress(min(progress / total_rows, 1.0)) df["VADER Sentiment"] = sentiments_v df["TextBlob Sentiment"] = sentiments_tb df["HuggingFace Sentiment"] = sentiments_hf # Save processed file with modified filename new_filename = os.path.splitext(file.name)[0] + "1.csv" df.to_csv( os.path.join(processed_directory, new_filename), index=False ) st.success(f"New file processed and saved as {new_filename}") # List of already processed files processed_files = get_processed_filenames() selected_files = st.multiselect("Select from Processed Files", processed_files) if not files and not selected_files: st.info( "Upload a new CSV file or select from processed files above for sentiment analysis." ) all_dfs = [] # Process already selected files for file_name in selected_files: df = pd.read_csv(os.path.join(processed_directory, file_name)) all_dfs.append(df) # Results if all_dfs: combined_df = pd.concat(all_dfs, ignore_index=True) if selected_model == "TextBlob": result = "TextBlob Sentiment" combined_df.drop( columns=["VADER Sentiment", "HuggingFace Sentiment"], inplace=True, ) elif selected_model == "VADER": result = "VADER Sentiment" combined_df.drop( columns=["TextBlob Sentiment", "HuggingFace Sentiment"], inplace=True, ) elif selected_model == "Hugging Face": result = "HuggingFace Sentiment" combined_df.drop( columns=["TextBlob Sentiment", "VADER Sentiment"], inplace=True, ) combined_df.rename(columns={result: "Sentiment"}, inplace=True) if result_option == "DataFrame": st.subheader("Sentiment Analysis Results") display_dataframe(combined_df) download_csv(combined_df) elif result_option == "Pie Chart": st.subheader("Sentiment Distribution") display_pie_chart(combined_df, "Sentiment") elif result_option == "Bar Chart": # Calculate value counts sentiment_counts = combined_df["Sentiment"].value_counts() # Display bar chart st.bar_chart(sentiment_counts) # Add a download button if st.button('Download Sentiment Counts Chart'): # Plot the bar chart fig, ax = plt.subplots() sentiment_counts.plot(kind='bar', ax=ax) plt.xlabel('Sentiment') plt.ylabel('Count') plt.title('Sentiment Counts') plt.xticks(rotation=45, ha='right') plt.tight_layout() # Save the bar chart as an image file plt.savefig('sentiment_counts_chart.png') # Offer the image file for download st.download_button(label='Download Sentiment Counts Chart Image', data=open('sentiment_counts_chart.png', 'rb').read(), file_name='sentiment_counts_chart.png', mime='image/png') elif result_option == "Keyword Frequency": st.subheader("Keyword Frequency") # List of keywords keywords = [ "delivery", "shipping", "parcel", "package", "tracking", "shipment", "cargo", "freight", "automation", "automated", "robotic", "robots", "AI", "artificial intelligence", "machine learning", "chatbot", "virtual assistant", "customer support", "real-time", "instant", "live update", "status", "IoT", "internet of things", "connected devices", "smart technology", "blockchain", "ledger", "transparency", "security", "sustainability", "eco-friendly", "green logistics", "carbon footprint", "customer service", "support", "experience", "satisfaction", "data analytics", "big data", "analysis", "insights", "cloud computing", "cloud-based", "digital infrastructure", "storage", "5G", "connectivity", "network speed", "wireless", "drone", "aerial delivery", "UAV", "drone shipping", "augmented reality", "AR", "virtual reality", "VR", "3D printing", "additive manufacturing", "custom parts", "prototyping", "inventory management", "stock levels", "warehouse management", "storage solutions", "supply chain", "logistics", "supply network", "distribution", "eco-packaging", "sustainable materials", "recycling", "waste reduction", "digital platform", "e-commerce", "online shopping", "online order", "cybersecurity", "data protection", "privacy", "encryption", "predictive modeling", "forecasting", "demand planning", "trend analysis", "robotics", "automated vehicles", "self-driving cars", "logistics automation", "visibility", "supply chain visibility", "track and trace", "monitoring", "integration", "ERP", "supply chain integration", "software", "optimization", "efficiency", "process improvement", "lean logistics", "personalization", "customization", "tailored services", "personal touch", "ethical sourcing", "fair trade", "labor rights", "ethical business", "user experience", "UX", "customer journey", "service design", "visibility", ] text_data = " ".join(combined_df["review_text"]) keyword_frequency = ( pd.Series(text_data.split()).value_counts().reset_index() ) keyword_frequency.columns = ["Keyword", "Frequency"] # Filter keyword frequency for specific keywords filtered_keyword_frequency = keyword_frequency[ keyword_frequency["Keyword"].isin(keywords) ] # Display bar chart for filtered keyword frequency st.bar_chart(filtered_keyword_frequency.set_index("Keyword")) # Add a download button if st.button('Download Keyword Frequency Chart'): # Plot the bar chart fig, ax = plt.subplots() filtered_keyword_frequency.plot(kind='bar', x='Keyword', y='Frequency', ax=ax) plt.xticks(rotation=45, ha='right') plt.tight_layout() # Save the bar chart as an image file plt.savefig('keyword_frequency_chart.png') # Offer the image file for download st.download_button(label='Download Keyword Frequency Chart Image', data=open('keyword_frequency_chart.png', 'rb').read(), file_name='keyword_frequency_chart.png', mime='image/png') elif result_option == "Word Cloud": st.subheader("Word Cloud") text_data = " ".join(combined_df["review_text"]) display_wordcloud(text_data) else: st.subheader("Comparative Sentiment Analysis") supply_chain_areas = { 'logistics': ['logistics', 'supply chain', 'cargo', 'shipment', 'freight', 'package', 'tracking'], 'delivery': ['delivery', 'shipping', 'courier', 'postal', 'parcel'], 'inventory': ['inventory', 'stock', 'storage', 'warehouse', 'security’'], 'customer service': ['customer service', 'support', 'helpdesk', 'service center', 'experience', 'refund'], 'procurement': ['procurement', 'sourcing', 'purchasing', 'buying', 'order'], 'distribution': ['distribution', 'supply network', 'distribution center'], 'manufacturing': ['manufacturing', 'production', 'assembly', 'quality', 'defect'] } supply_chain_area = st.sidebar.radio( "Select Supply Chain Area", ("logistics", "delivery", "inventory", "customer service", "procurement", "distribution","manufacturing"), ) # Call the function to count occurrences of keywords and sentiment distribution keyword_counts = count_reviews_with_keywords(combined_df,supply_chain_areas[supply_chain_area]) # Convert keyword_counts to DataFrame df_counts = pd.DataFrame(keyword_counts).transpose() # Plot dual bar chart horizontally st.bar_chart(df_counts[["Positive", "Negative"]], use_container_width=True, height=500)