Spaces:
Sleeping
Sleeping
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,463 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer
|
4 |
+
from textblob import TextBlob
|
5 |
+
from transformers import pipeline
|
6 |
+
import matplotlib.pyplot as plt
|
7 |
+
import base64
|
8 |
+
import os
|
9 |
+
from wordcloud import WordCloud
|
10 |
+
|
11 |
+
# Function to perform sentiment analysis using Hugging Face model
|
12 |
+
hf_sentiment_analyzer = pipeline(
|
13 |
+
"sentiment-analysis", "Dmyadav2001/Sentimental-Analysis"
|
14 |
+
)
|
15 |
+
|
16 |
+
def analyze_hf_sentiment(text):
|
17 |
+
if len(text) > 512:
|
18 |
+
temp = text[:511]
|
19 |
+
text = temp
|
20 |
+
result = hf_sentiment_analyzer(text)
|
21 |
+
label = result[0]["label"]
|
22 |
+
if label == "LABEL_1":
|
23 |
+
return "Positive"
|
24 |
+
elif label == "LABEL_0":
|
25 |
+
return "Negative"
|
26 |
+
elif label == "LABEL_2":
|
27 |
+
return "Neutral"
|
28 |
+
|
29 |
+
# Function to perform sentiment analysis using VADER
|
30 |
+
def analyze_vader_sentiment(text):
|
31 |
+
analyzer = SentimentIntensityAnalyzer()
|
32 |
+
vader_score = analyzer.polarity_scores(text)["compound"]
|
33 |
+
if vader_score > 0:
|
34 |
+
return "Positive"
|
35 |
+
elif vader_score == 0:
|
36 |
+
return "Neutral"
|
37 |
+
else:
|
38 |
+
return "Negative"
|
39 |
+
|
40 |
+
# Function to perform sentiment analysis using TextBlob
|
41 |
+
def analyze_textblob_sentiment(text):
|
42 |
+
analysis = TextBlob(text)
|
43 |
+
sentiment_score = analysis.sentiment.polarity
|
44 |
+
if sentiment_score > 0:
|
45 |
+
return "Positive"
|
46 |
+
elif sentiment_score == 0:
|
47 |
+
return "Neutral"
|
48 |
+
else:
|
49 |
+
return "Negative"
|
50 |
+
|
51 |
+
# Function to display DataFrame with updated sentiment column
|
52 |
+
def display_dataframe(df):
|
53 |
+
st.write(df)
|
54 |
+
|
55 |
+
# Function to display pie chart for sentiment distribution
|
56 |
+
def display_pie_chart(df, column):
|
57 |
+
sentiment_counts = df[column].value_counts()
|
58 |
+
fig, ax = plt.subplots()
|
59 |
+
ax.pie(
|
60 |
+
sentiment_counts,
|
61 |
+
labels=sentiment_counts.index,
|
62 |
+
autopct="%1.1f%%",
|
63 |
+
startangle=140,
|
64 |
+
)
|
65 |
+
ax.axis("equal")
|
66 |
+
st.pyplot(fig)
|
67 |
+
|
68 |
+
# Add a download button
|
69 |
+
if st.button('Download Pie Chart'):
|
70 |
+
# Save the pie chart as an image file
|
71 |
+
plt.savefig('pie_chart.png')
|
72 |
+
|
73 |
+
# Offer the image file for download
|
74 |
+
st.download_button(label='Download Pie Chart Image', data=open('pie_chart.png', 'rb').read(), file_name='pie_chart.png', mime='image/png')
|
75 |
+
|
76 |
+
# Function to display word cloud
|
77 |
+
def display_wordcloud(text_data):
|
78 |
+
wordcloud = WordCloud(width=800, height=400, background_color="white").generate(
|
79 |
+
text_data
|
80 |
+
)
|
81 |
+
fig, ax = plt.subplots(figsize=(10, 5))
|
82 |
+
ax.imshow(wordcloud, interpolation="bilinear")
|
83 |
+
ax.axis("off")
|
84 |
+
st.pyplot(fig)
|
85 |
+
|
86 |
+
# Add a download button
|
87 |
+
if st.button('Download Word Cloud'):
|
88 |
+
# Save the word cloud as an image file
|
89 |
+
plt.savefig('word_cloud.png')
|
90 |
+
|
91 |
+
# Offer the image file for download
|
92 |
+
st.download_button(label='Download Word Cloud Image', data=open('word_cloud.png', 'rb').read(), file_name='word_cloud.png', mime='image/png')
|
93 |
+
|
94 |
+
# Function to download CSV file
|
95 |
+
def download_csv(df):
|
96 |
+
csv = df.to_csv(index=False)
|
97 |
+
b64 = base64.b64encode(csv.encode()).decode() # B64 encoding
|
98 |
+
href = f'<a href="data:file/csv;base64,{b64}" download="sentiment_analysis_results.csv">Download CSV File</a>'
|
99 |
+
st.markdown(href, unsafe_allow_html=True)
|
100 |
+
|
101 |
+
# Function to count occurrences of keywords and sentiment distribution
|
102 |
+
def count_reviews_with_keywords(df,keywords):
|
103 |
+
# keywords=['logistics', 'supply chain', 'cargo', 'shipment', 'freight', 'package', 'tracking']
|
104 |
+
keyword_counts = {keyword: {"Positive": 0, "Negative": 0, "Total": 0} for keyword in keywords}
|
105 |
+
|
106 |
+
for _, row in df.iterrows():
|
107 |
+
review_text = row["review_text"]
|
108 |
+
sentiment = row["Sentiment"]
|
109 |
+
|
110 |
+
for keyword in keywords:
|
111 |
+
if keyword.lower() in review_text.lower():
|
112 |
+
keyword_counts[keyword]["Total"] += 1
|
113 |
+
if sentiment == "Positive":
|
114 |
+
keyword_counts[keyword]["Positive"] += 1
|
115 |
+
elif sentiment == "Negative":
|
116 |
+
keyword_counts[keyword]["Negative"] += 1
|
117 |
+
|
118 |
+
return keyword_counts
|
119 |
+
|
120 |
+
|
121 |
+
# Streamlit UI
|
122 |
+
st.set_page_config(page_title="JazbaatMeter", page_icon=":smiley:")
|
123 |
+
st.title("JazbaatMeter")
|
124 |
+
|
125 |
+
# Sidebar
|
126 |
+
st.sidebar.title("Options")
|
127 |
+
input_option = st.sidebar.radio("Select Input Option", ("Free Text", "CSV Files"))
|
128 |
+
selected_model = st.sidebar.radio(
|
129 |
+
"Select Sentiment Analysis Model", ("VADER", "TextBlob", "Hugging Face")
|
130 |
+
)
|
131 |
+
result_option = st.sidebar.radio(
|
132 |
+
"Select Result Display Option",
|
133 |
+
("DataFrame", "Pie Chart", "Bar Chart", "Keyword Frequency", "WordCloud", "Comparative Sentiment Analysis"),
|
134 |
+
)
|
135 |
+
|
136 |
+
# Main content
|
137 |
+
progress_label = st.empty() # Define progress label
|
138 |
+
progress_bar = st.progress(0)
|
139 |
+
progress = 0
|
140 |
+
|
141 |
+
# Directory path to store processed files
|
142 |
+
processed_directory = "processed_files"
|
143 |
+
|
144 |
+
# Ensure the directory exists, if not create it
|
145 |
+
os.makedirs(processed_directory, exist_ok=True)
|
146 |
+
|
147 |
+
# List to store processed filenames
|
148 |
+
processed_files = []
|
149 |
+
|
150 |
+
# Function to get filenames from the processed directory
|
151 |
+
def get_processed_filenames():
|
152 |
+
return [
|
153 |
+
f
|
154 |
+
for f in os.listdir(processed_directory)
|
155 |
+
if os.path.isfile(os.path.join(processed_directory, f))
|
156 |
+
]
|
157 |
+
|
158 |
+
if input_option == "Free Text":
|
159 |
+
st.subheader("Enter review for sentiment analysis:")
|
160 |
+
user_input = st.text_area("", "")
|
161 |
+
if not user_input:
|
162 |
+
st.info("Enter some text above for sentiment analysis.")
|
163 |
+
else:
|
164 |
+
with st.spinner("Analyzing..."):
|
165 |
+
if selected_model == "Hugging Face":
|
166 |
+
result = analyze_hf_sentiment(user_input)
|
167 |
+
elif selected_model == "VADER":
|
168 |
+
result = analyze_vader_sentiment(user_input)
|
169 |
+
elif selected_model == "TextBlob":
|
170 |
+
result = analyze_textblob_sentiment(user_input)
|
171 |
+
st.write("Sentiment:", result)
|
172 |
+
|
173 |
+
if input_option == "CSV Files":
|
174 |
+
st.subheader("Select CSV files for sentiment analysis:")
|
175 |
+
|
176 |
+
# Uploading new file
|
177 |
+
files = st.file_uploader(
|
178 |
+
"Upload New File", type=["csv"], accept_multiple_files=True
|
179 |
+
)
|
180 |
+
if files:
|
181 |
+
# Process uploaded new files
|
182 |
+
for file in files:
|
183 |
+
if file.type != "text/csv":
|
184 |
+
st.warning(
|
185 |
+
"Uploaded file is not a CSV file. Please upload a CSV file only."
|
186 |
+
)
|
187 |
+
else:
|
188 |
+
df = pd.read_csv(file)
|
189 |
+
if "review_text" not in df.columns:
|
190 |
+
st.warning(
|
191 |
+
"Uploaded CSV file doesn't contain 'review_text' column. Please check the CSV file format."
|
192 |
+
)
|
193 |
+
else:
|
194 |
+
total_rows = len(df)
|
195 |
+
|
196 |
+
sentiments_v = []
|
197 |
+
sentiments_tb = []
|
198 |
+
sentiments_hf = []
|
199 |
+
|
200 |
+
for review_text in df["review_text"]:
|
201 |
+
sentiments_v.append(analyze_vader_sentiment(review_text))
|
202 |
+
sentiments_tb.append(analyze_textblob_sentiment(review_text))
|
203 |
+
sentiments_hf.append(analyze_hf_sentiment(review_text))
|
204 |
+
progress += 1
|
205 |
+
progress_label.text(f"{progress}/{total_rows}")
|
206 |
+
progress_bar.progress(min(progress / total_rows, 1.0))
|
207 |
+
|
208 |
+
df["VADER Sentiment"] = sentiments_v
|
209 |
+
df["TextBlob Sentiment"] = sentiments_tb
|
210 |
+
df["HuggingFace Sentiment"] = sentiments_hf
|
211 |
+
|
212 |
+
# Save processed file with modified filename
|
213 |
+
new_filename = os.path.splitext(file.name)[0] + "1.csv"
|
214 |
+
df.to_csv(
|
215 |
+
os.path.join(processed_directory, new_filename), index=False
|
216 |
+
)
|
217 |
+
st.success(f"New file processed and saved as {new_filename}")
|
218 |
+
|
219 |
+
# List of already processed files
|
220 |
+
processed_files = get_processed_filenames()
|
221 |
+
selected_files = st.multiselect("Select from Processed Files", processed_files)
|
222 |
+
|
223 |
+
if not files and not selected_files:
|
224 |
+
st.info(
|
225 |
+
"Upload a new CSV file or select from processed files above for sentiment analysis."
|
226 |
+
)
|
227 |
+
|
228 |
+
all_dfs = []
|
229 |
+
|
230 |
+
# Process already selected files
|
231 |
+
for file_name in selected_files:
|
232 |
+
df = pd.read_csv(os.path.join(processed_directory, file_name))
|
233 |
+
all_dfs.append(df)
|
234 |
+
|
235 |
+
# Results
|
236 |
+
if all_dfs:
|
237 |
+
combined_df = pd.concat(all_dfs, ignore_index=True)
|
238 |
+
if selected_model == "TextBlob":
|
239 |
+
result = "TextBlob Sentiment"
|
240 |
+
combined_df.drop(
|
241 |
+
columns=["VADER Sentiment", "HuggingFace Sentiment"],
|
242 |
+
inplace=True,
|
243 |
+
)
|
244 |
+
elif selected_model == "VADER":
|
245 |
+
result = "VADER Sentiment"
|
246 |
+
combined_df.drop(
|
247 |
+
columns=["TextBlob Sentiment", "HuggingFace Sentiment"],
|
248 |
+
inplace=True,
|
249 |
+
)
|
250 |
+
elif selected_model == "Hugging Face":
|
251 |
+
result = "HuggingFace Sentiment"
|
252 |
+
combined_df.drop(
|
253 |
+
columns=["TextBlob Sentiment", "VADER Sentiment"],
|
254 |
+
inplace=True,
|
255 |
+
)
|
256 |
+
combined_df.rename(columns={result: "Sentiment"}, inplace=True)
|
257 |
+
|
258 |
+
if result_option == "DataFrame":
|
259 |
+
st.subheader("Sentiment Analysis Results")
|
260 |
+
display_dataframe(combined_df)
|
261 |
+
download_csv(combined_df)
|
262 |
+
elif result_option == "Pie Chart":
|
263 |
+
st.subheader("Sentiment Distribution")
|
264 |
+
display_pie_chart(combined_df, "Sentiment")
|
265 |
+
elif result_option == "Bar Chart":
|
266 |
+
# Calculate value counts
|
267 |
+
sentiment_counts = combined_df["Sentiment"].value_counts()
|
268 |
+
# Display bar chart
|
269 |
+
st.bar_chart(sentiment_counts)
|
270 |
+
|
271 |
+
# Add a download button
|
272 |
+
if st.button('Download Sentiment Counts Chart'):
|
273 |
+
# Plot the bar chart
|
274 |
+
fig, ax = plt.subplots()
|
275 |
+
sentiment_counts.plot(kind='bar', ax=ax)
|
276 |
+
plt.xlabel('Sentiment')
|
277 |
+
plt.ylabel('Count')
|
278 |
+
plt.title('Sentiment Counts')
|
279 |
+
plt.xticks(rotation=45, ha='right')
|
280 |
+
plt.tight_layout()
|
281 |
+
|
282 |
+
# Save the bar chart as an image file
|
283 |
+
plt.savefig('sentiment_counts_chart.png')
|
284 |
+
|
285 |
+
# Offer the image file for download
|
286 |
+
st.download_button(label='Download Sentiment Counts Chart Image', data=open('sentiment_counts_chart.png', 'rb').read(), file_name='sentiment_counts_chart.png', mime='image/png')
|
287 |
+
|
288 |
+
elif result_option == "Keyword Frequency":
|
289 |
+
st.subheader("Keyword Frequency")
|
290 |
+
|
291 |
+
# List of keywords
|
292 |
+
keywords = [
|
293 |
+
"delivery",
|
294 |
+
"shipping",
|
295 |
+
"parcel",
|
296 |
+
"package",
|
297 |
+
"tracking",
|
298 |
+
"shipment",
|
299 |
+
"cargo",
|
300 |
+
"freight",
|
301 |
+
"automation",
|
302 |
+
"automated",
|
303 |
+
"robotic",
|
304 |
+
"robots",
|
305 |
+
"AI",
|
306 |
+
"artificial intelligence",
|
307 |
+
"machine learning",
|
308 |
+
"chatbot",
|
309 |
+
"virtual assistant",
|
310 |
+
"customer support",
|
311 |
+
"real-time",
|
312 |
+
"instant",
|
313 |
+
"live update",
|
314 |
+
"status",
|
315 |
+
"IoT",
|
316 |
+
"internet of things",
|
317 |
+
"connected devices",
|
318 |
+
"smart technology",
|
319 |
+
"blockchain",
|
320 |
+
"ledger",
|
321 |
+
"transparency",
|
322 |
+
"security",
|
323 |
+
"sustainability",
|
324 |
+
"eco-friendly",
|
325 |
+
"green logistics",
|
326 |
+
"carbon footprint",
|
327 |
+
"customer service",
|
328 |
+
"support",
|
329 |
+
"experience",
|
330 |
+
"satisfaction",
|
331 |
+
"data analytics",
|
332 |
+
"big data",
|
333 |
+
"analysis",
|
334 |
+
"insights",
|
335 |
+
"cloud computing",
|
336 |
+
"cloud-based",
|
337 |
+
"digital infrastructure",
|
338 |
+
"storage",
|
339 |
+
"5G",
|
340 |
+
"connectivity",
|
341 |
+
"network speed",
|
342 |
+
"wireless",
|
343 |
+
"drone",
|
344 |
+
"aerial delivery",
|
345 |
+
"UAV",
|
346 |
+
"drone shipping",
|
347 |
+
"augmented reality",
|
348 |
+
"AR",
|
349 |
+
"virtual reality",
|
350 |
+
"VR",
|
351 |
+
"3D printing",
|
352 |
+
"additive manufacturing",
|
353 |
+
"custom parts",
|
354 |
+
"prototyping",
|
355 |
+
"inventory management",
|
356 |
+
"stock levels",
|
357 |
+
"warehouse management",
|
358 |
+
"storage solutions",
|
359 |
+
"supply chain",
|
360 |
+
"logistics",
|
361 |
+
"supply network",
|
362 |
+
"distribution",
|
363 |
+
"eco-packaging",
|
364 |
+
"sustainable materials",
|
365 |
+
"recycling",
|
366 |
+
"waste reduction",
|
367 |
+
"digital platform",
|
368 |
+
"e-commerce",
|
369 |
+
"online shopping",
|
370 |
+
"online order",
|
371 |
+
"cybersecurity",
|
372 |
+
"data protection",
|
373 |
+
"privacy",
|
374 |
+
"encryption",
|
375 |
+
"predictive modeling",
|
376 |
+
"forecasting",
|
377 |
+
"demand planning",
|
378 |
+
"trend analysis",
|
379 |
+
"robotics",
|
380 |
+
"automated vehicles",
|
381 |
+
"self-driving cars",
|
382 |
+
"logistics automation",
|
383 |
+
"visibility",
|
384 |
+
"supply chain visibility",
|
385 |
+
"track and trace",
|
386 |
+
"monitoring",
|
387 |
+
"integration",
|
388 |
+
"ERP",
|
389 |
+
"supply chain integration",
|
390 |
+
"software",
|
391 |
+
"optimization",
|
392 |
+
"efficiency",
|
393 |
+
"process improvement",
|
394 |
+
"lean logistics",
|
395 |
+
"personalization",
|
396 |
+
"customization",
|
397 |
+
"tailored services",
|
398 |
+
"personal touch",
|
399 |
+
"ethical sourcing",
|
400 |
+
"fair trade",
|
401 |
+
"labor rights",
|
402 |
+
"ethical business",
|
403 |
+
"user experience",
|
404 |
+
"UX",
|
405 |
+
"customer journey",
|
406 |
+
"service design",
|
407 |
+
"visibility",
|
408 |
+
]
|
409 |
+
text_data = " ".join(combined_df["review_text"])
|
410 |
+
keyword_frequency = (
|
411 |
+
pd.Series(text_data.split()).value_counts().reset_index()
|
412 |
+
)
|
413 |
+
keyword_frequency.columns = ["Keyword", "Frequency"]
|
414 |
+
|
415 |
+
# Filter keyword frequency for specific keywords
|
416 |
+
filtered_keyword_frequency = keyword_frequency[
|
417 |
+
keyword_frequency["Keyword"].isin(keywords)
|
418 |
+
]
|
419 |
+
|
420 |
+
# Display bar chart for filtered keyword frequency
|
421 |
+
st.bar_chart(filtered_keyword_frequency.set_index("Keyword"))
|
422 |
+
|
423 |
+
# Add a download button
|
424 |
+
if st.button('Download Keyword Frequency Chart'):
|
425 |
+
# Plot the bar chart
|
426 |
+
fig, ax = plt.subplots()
|
427 |
+
filtered_keyword_frequency.plot(kind='bar', x='Keyword', y='Frequency', ax=ax)
|
428 |
+
plt.xticks(rotation=45, ha='right')
|
429 |
+
plt.tight_layout()
|
430 |
+
|
431 |
+
# Save the bar chart as an image file
|
432 |
+
plt.savefig('keyword_frequency_chart.png')
|
433 |
+
|
434 |
+
# Offer the image file for download
|
435 |
+
st.download_button(label='Download Keyword Frequency Chart Image', data=open('keyword_frequency_chart.png', 'rb').read(), file_name='keyword_frequency_chart.png', mime='image/png')
|
436 |
+
elif result_option == "Word Cloud":
|
437 |
+
st.subheader("Word Cloud")
|
438 |
+
text_data = " ".join(combined_df["review_text"])
|
439 |
+
display_wordcloud(text_data)
|
440 |
+
else:
|
441 |
+
st.subheader("Comparative Sentiment Analysis")
|
442 |
+
supply_chain_areas = {
|
443 |
+
'logistics': ['logistics', 'supply chain', 'cargo', 'shipment', 'freight', 'package', 'tracking'],
|
444 |
+
'delivery': ['delivery', 'shipping', 'courier', 'postal', 'parcel'],
|
445 |
+
'inventory': ['inventory', 'stock', 'storage', 'warehouse', 'security’'],
|
446 |
+
'customer service': ['customer service', 'support', 'helpdesk', 'service center', 'experience', 'refund'],
|
447 |
+
'procurement': ['procurement', 'sourcing', 'purchasing', 'buying', 'order'],
|
448 |
+
'distribution': ['distribution', 'supply network', 'distribution center'],
|
449 |
+
'manufacturing': ['manufacturing', 'production', 'assembly', 'quality', 'defect']
|
450 |
+
}
|
451 |
+
|
452 |
+
supply_chain_area = st.sidebar.radio(
|
453 |
+
"Select Supply Chain Area",
|
454 |
+
("logistics", "delivery", "inventory", "customer service", "procurement", "distribution","manufacturing"),
|
455 |
+
)
|
456 |
+
# Call the function to count occurrences of keywords and sentiment distribution
|
457 |
+
keyword_counts = count_reviews_with_keywords(combined_df,supply_chain_areas[supply_chain_area])
|
458 |
+
|
459 |
+
# Convert keyword_counts to DataFrame
|
460 |
+
df_counts = pd.DataFrame(keyword_counts).transpose()
|
461 |
+
|
462 |
+
# Plot dual bar chart horizontally
|
463 |
+
st.bar_chart(df_counts[["Positive", "Negative"]], use_container_width=True, height=500)
|