Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -9,19 +9,14 @@ import json
|
|
9 |
from typing import Optional
|
10 |
|
11 |
import torch
|
12 |
-
import gradio as gr
|
13 |
|
14 |
from config import model_config
|
15 |
-
|
16 |
-
from fastapi import FastAPI, File, Form, UploadFile, HTTPException
|
17 |
-
from fastapi.responses import StreamingResponse, Response
|
18 |
-
|
19 |
-
import uvicorn
|
20 |
|
21 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
22 |
model_dir = snapshot_download(model_config['model_dir'])
|
23 |
|
24 |
-
# 初始化模型
|
25 |
model = AutoModel(
|
26 |
model=model_dir,
|
27 |
trust_remote_code=False,
|
@@ -39,15 +34,12 @@ def transcribe_audio(file_path, vad_model="fsmn-vad", vad_kwargs='{"max_single_s
|
|
39 |
merge_vad=True, merge_length_s=15, batch_size_threshold_s=50,
|
40 |
hotword=" ", spk_model="cam++", ban_emo_unk=False):
|
41 |
try:
|
42 |
-
# 将字符串转换为字典
|
43 |
vad_kwargs = json.loads(vad_kwargs)
|
44 |
|
45 |
-
# 使用文件路径作为输入
|
46 |
temp_file_path = file_path
|
47 |
|
48 |
-
# 生成结果
|
49 |
res = model.generate(
|
50 |
-
input=temp_file_path,
|
51 |
cache={},
|
52 |
language=language,
|
53 |
use_itn=use_itn,
|
@@ -60,18 +52,15 @@ def transcribe_audio(file_path, vad_model="fsmn-vad", vad_kwargs='{"max_single_s
|
|
60 |
ban_emo_unk=ban_emo_unk
|
61 |
)
|
62 |
|
63 |
-
# 处理结果
|
64 |
text = rich_transcription_postprocess(res[0]["text"])
|
65 |
|
66 |
return text
|
67 |
|
68 |
except Exception as e:
|
69 |
-
# 捕获异常并返回错误信息
|
70 |
return str(e)
|
71 |
|
72 |
-
# 创建Gradio界面
|
73 |
inputs = [
|
74 |
-
gr.Audio(type="filepath"),
|
75 |
gr.Textbox(value="fsmn-vad", label="VAD Model"),
|
76 |
gr.Textbox(value='{"max_single_segment_time": 30000}', label="VAD Kwargs"),
|
77 |
gr.Slider(1, 8, value=4, step=1, label="NCPU"),
|
@@ -97,84 +86,21 @@ gr.Interface(
|
|
97 |
).launch()
|
98 |
|
99 |
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
hotword: Optional[str] = Form(" "),
|
119 |
-
spk_model: str = Form("cam++"),
|
120 |
-
ban_emo_unk: bool = Form(False),
|
121 |
-
) -> StreamingResponse:
|
122 |
-
try:
|
123 |
-
# 将字符串转换为字典
|
124 |
-
vad_kwargs = json.loads(vad_kwargs)
|
125 |
-
|
126 |
-
# 创建临时文件并保存上传的音频文件
|
127 |
-
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as temp_file:
|
128 |
-
temp_file_path = temp_file.name
|
129 |
-
input_wav_bytes = await file.read()
|
130 |
-
temp_file.write(input_wav_bytes)
|
131 |
-
|
132 |
-
try:
|
133 |
-
# 初始化模型
|
134 |
-
model = AutoModel(
|
135 |
-
model=model_dir,
|
136 |
-
trust_remote_code=False,
|
137 |
-
remote_code="./model.py",
|
138 |
-
vad_model=vad_model,
|
139 |
-
vad_kwargs=vad_kwargs,
|
140 |
-
ncpu=ncpu,
|
141 |
-
batch_size=batch_size,
|
142 |
-
hub="ms",
|
143 |
-
device=device,
|
144 |
-
)
|
145 |
-
|
146 |
-
# 生成结果
|
147 |
-
res = model.generate(
|
148 |
-
input=temp_file_path, # 使用临时文件路径作为输入
|
149 |
-
cache={},
|
150 |
-
language=language,
|
151 |
-
use_itn=use_itn,
|
152 |
-
batch_size_s=batch_size_s,
|
153 |
-
merge_vad=merge_vad,
|
154 |
-
merge_length_s=merge_length_s,
|
155 |
-
batch_size_threshold_s=batch_size_threshold_s,
|
156 |
-
hotword=hotword,
|
157 |
-
spk_model=spk_model,
|
158 |
-
ban_emo_unk=ban_emo_unk
|
159 |
-
)
|
160 |
-
|
161 |
-
# 处理结果
|
162 |
-
text = rich_transcription_postprocess(res[0]["text"])
|
163 |
-
|
164 |
-
# 返回结果
|
165 |
-
return StreamingResponse(io.BytesIO(text.encode('utf-8')), media_type="text/plain")
|
166 |
-
|
167 |
-
finally:
|
168 |
-
# 确保在处理完毕后删除临时文件
|
169 |
-
if os.path.exists(temp_file_path):
|
170 |
-
os.remove(temp_file_path)
|
171 |
-
|
172 |
-
except Exception as e:
|
173 |
-
raise HTTPException(status_code=500, detail=str(e))
|
174 |
-
|
175 |
-
@app.get("/root")
|
176 |
-
async def read_root():
|
177 |
-
return {"message": "Hello World"}
|
178 |
-
|
179 |
-
if __name__ == "__main__":
|
180 |
-
uvicorn.run(app, host="0.0.0.0", port=7860)
|
|
|
9 |
from typing import Optional
|
10 |
|
11 |
import torch
|
12 |
+
import gradio as gr
|
13 |
|
14 |
from config import model_config
|
15 |
+
from gradio_client import Client, handle_file
|
|
|
|
|
|
|
|
|
16 |
|
17 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
18 |
model_dir = snapshot_download(model_config['model_dir'])
|
19 |
|
|
|
20 |
model = AutoModel(
|
21 |
model=model_dir,
|
22 |
trust_remote_code=False,
|
|
|
34 |
merge_vad=True, merge_length_s=15, batch_size_threshold_s=50,
|
35 |
hotword=" ", spk_model="cam++", ban_emo_unk=False):
|
36 |
try:
|
|
|
37 |
vad_kwargs = json.loads(vad_kwargs)
|
38 |
|
|
|
39 |
temp_file_path = file_path
|
40 |
|
|
|
41 |
res = model.generate(
|
42 |
+
input=temp_file_path,
|
43 |
cache={},
|
44 |
language=language,
|
45 |
use_itn=use_itn,
|
|
|
52 |
ban_emo_unk=ban_emo_unk
|
53 |
)
|
54 |
|
|
|
55 |
text = rich_transcription_postprocess(res[0]["text"])
|
56 |
|
57 |
return text
|
58 |
|
59 |
except Exception as e:
|
|
|
60 |
return str(e)
|
61 |
|
|
|
62 |
inputs = [
|
63 |
+
gr.Audio(type="filepath"),
|
64 |
gr.Textbox(value="fsmn-vad", label="VAD Model"),
|
65 |
gr.Textbox(value='{"max_single_segment_time": 30000}', label="VAD Kwargs"),
|
66 |
gr.Slider(1, 8, value=4, step=1, label="NCPU"),
|
|
|
86 |
).launch()
|
87 |
|
88 |
|
89 |
+
client = Client("TaiYouWeb/funasr-svsmall-cpu")
|
90 |
+
result = client.predict(
|
91 |
+
file_path=handle_file('https://github.com/gradio-app/gradio/raw/main/test/test_files/audio_sample.wav'),
|
92 |
+
vad_model="fsmn-vad",
|
93 |
+
vad_kwargs="{"max_single_segment_time": 30000}",
|
94 |
+
ncpu=4,
|
95 |
+
batch_size=1,
|
96 |
+
language="auto",
|
97 |
+
use_itn=True,
|
98 |
+
batch_size_s=60,
|
99 |
+
merge_vad=True,
|
100 |
+
merge_length_s=15,
|
101 |
+
batch_size_threshold_s=50,
|
102 |
+
hotword=" ",
|
103 |
+
spk_model="cam++",
|
104 |
+
ban_emo_unk=False,
|
105 |
+
api_name="/asr"
|
106 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|