Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import TrOCRProcessor, VisionEncoderDecoderModel
|
3 |
+
from PIL import Image
|
4 |
+
import requests
|
5 |
+
|
6 |
+
def load_model():
|
7 |
+
processor = TrOCRProcessor.from_pretrained('microsoft/trocr-base-printed')
|
8 |
+
model = VisionEncoderDecoderModel.from_pretrained('microsoft/trocr-base-printed')
|
9 |
+
return processor, model
|
10 |
+
|
11 |
+
def process_image(image, processor, model):
|
12 |
+
pixel_values = processor(images=image, return_tensors="pt").pixel_values
|
13 |
+
generated_ids = model.generate(pixel_values)
|
14 |
+
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
15 |
+
return generated_text
|
16 |
+
|
17 |
+
st.title("Print OCR with TrOCR")
|
18 |
+
|
19 |
+
# Load model and processor
|
20 |
+
processor, model = load_model()
|
21 |
+
|
22 |
+
# File uploader
|
23 |
+
uploaded_file = st.file_uploader("Upload an image", type=["jpg", "png", "jpeg"])
|
24 |
+
|
25 |
+
if uploaded_file is not None:
|
26 |
+
image = Image.open(uploaded_file).convert("RGB")
|
27 |
+
st.image(image, caption="Uploaded Image", use_column_width=True)
|
28 |
+
|
29 |
+
with st.spinner("Extracting text..."):
|
30 |
+
extracted_text = process_image(image, processor, model)
|
31 |
+
|
32 |
+
st.subheader("Extracted Text:")
|
33 |
+
st.write(extracted_text)
|
34 |
+
|
35 |
+
# Example URL processing
|
36 |
+
st.write("Or try with an example image:")
|
37 |
+
default_url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg"
|
38 |
+
if st.button("Process Example Image"):
|
39 |
+
image = Image.open(requests.get(default_url, stream=True).raw).convert("RGB")
|
40 |
+
st.image(image, caption="Example Image", use_column_width=True)
|
41 |
+
with st.spinner("Extracting text..."):
|
42 |
+
extracted_text = process_image(image, processor, model)
|
43 |
+
st.subheader("Extracted Text:")
|
44 |
+
st.write(extracted_text)
|