Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import torch
|
3 |
+
from torch import nn
|
4 |
+
from transformers import SegformerImageProcessor, SegformerForSemanticSegmentation
|
5 |
+
from PIL import Image
|
6 |
+
import numpy as np
|
7 |
+
import matplotlib.pyplot as plt
|
8 |
+
|
9 |
+
def load_model():
|
10 |
+
"""Load the Segformer model and processor."""
|
11 |
+
processor = SegformerImageProcessor.from_pretrained("jonathandinu/face-parsing")
|
12 |
+
model = SegformerForSemanticSegmentation.from_pretrained("jonathandinu/face-parsing")
|
13 |
+
device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
|
14 |
+
model.to(device)
|
15 |
+
return processor, model, device
|
16 |
+
|
17 |
+
def process_image(image: Image.Image, processor, model, device):
|
18 |
+
"""Run inference on the image and return the segmentation mask."""
|
19 |
+
inputs = processor(images=image, return_tensors="pt").to(device)
|
20 |
+
outputs = model(**inputs)
|
21 |
+
logits = outputs.logits
|
22 |
+
upsampled_logits = nn.functional.interpolate(
|
23 |
+
logits, size=image.size[::-1], mode="bilinear", align_corners=False
|
24 |
+
)
|
25 |
+
labels = upsampled_logits.argmax(dim=1)[0].cpu().numpy()
|
26 |
+
return labels
|
27 |
+
|
28 |
+
def visualize_segmentation(labels: np.ndarray):
|
29 |
+
"""Visualize segmentation mask using Matplotlib."""
|
30 |
+
fig, ax = plt.subplots()
|
31 |
+
ax.imshow(labels, cmap="jet", alpha=0.7)
|
32 |
+
ax.axis("off")
|
33 |
+
st.pyplot(fig)
|
34 |
+
|
35 |
+
# Streamlit UI
|
36 |
+
st.title("Face Parsing using Segformer")
|
37 |
+
st.write("Upload an image to perform semantic segmentation on faces.")
|
38 |
+
|
39 |
+
# Load model
|
40 |
+
processor, model, device = load_model()
|
41 |
+
|
42 |
+
# File uploader
|
43 |
+
uploaded_file = st.file_uploader("Upload an image", type=["jpg", "png", "jpeg"])
|
44 |
+
|
45 |
+
if uploaded_file:
|
46 |
+
image = Image.open(uploaded_file).convert("RGB")
|
47 |
+
st.image(image, caption="Uploaded Image", use_column_width=True)
|
48 |
+
|
49 |
+
# Process image
|
50 |
+
with st.spinner("Processing..."):
|
51 |
+
labels = process_image(image, processor, model, device)
|
52 |
+
|
53 |
+
# Display result
|
54 |
+
visualize_segmentation(labels)
|