Tahir5's picture
Create app.py
8ec6b5b verified
import streamlit as st
import requests
from PIL import Image
from transformers import BlipProcessor, BlipForConditionalGeneration
# Load model and processor
def load_model():
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
return processor, model
processor, model = load_model()
st.title("Image Captioning with BLIP")
uploaded_file = st.file_uploader("Upload an Image", type=["jpg", "png", "jpeg"])
text_prompt = st.text_input("Enter a prompt for conditional captioning", "here...")
if uploaded_file is not None:
image = Image.open(uploaded_file).convert("RGB")
st.image(image, caption="Uploaded Image", use_column_width=True)
# Conditional captioning
inputs = processor(image, text_prompt, return_tensors="pt")
out = model.generate(**inputs)
conditional_caption = processor.decode(out[0], skip_special_tokens=True)
# Unconditional captioning
inputs = processor(image, return_tensors="pt")
out = model.generate(**inputs)
unconditional_caption = processor.decode(out[0], skip_special_tokens=True)
st.subheader("Generated Captions")
st.write(f"**Conditional Caption:** {conditional_caption}")
st.write(f"**Unconditional Caption:** {unconditional_caption}")